T. Y. B. Sc. ELECTRONIC SCIENCE

PAPER IV: SEMESTER IV FOUNDATION OF NANOELECTRONICS

PUBLISHED BY

SOCIETY FOR PROMOTION OF EXCELLENCE IN ELECTRONICS DISCIPLINE (SPEED)

(FOR PRIVATE CIRCULATION ONLY)

ACKNOWLEDGMENT

Major problem faced by T. Y. B.Sc. students is availability of text books and most of them are reference books. Sometimes books may not be available for the students. Hence SPEED (Society for Promotion of excellence in electronics discipline) has taken a step forward to help these students. SPEED has contributed by online publishing reference notes for the "Foundation of Nanotechnology" for T. Y. B.Sc. Electronic science students. These notes will really be helping them for understanding the subject as well as preparation for examination. We are thankful to Dr. S. Associate professor, Pemraj Ν. Khan, college, Ahmednagar for his major contribution preparation of notes. Such contribution from staff members is really appreciable.

> Dr. A. D. Shaligram Chairman, SPEED

Paper IV: Semester IV

EL -344: Foundation of Nanoelectronics

Learning Objectives:

- 1. To learn essential principles of Electromagnetics
- 2. To know the principles of quantum mechanical aspects
- 3. To study the basics of nanoelectronics.

Unit 1: Essential Electromagnetics

[14]

Lorentz force-Motion of charged particle in E-M fields, cyclotron frequency, Hall effect, Maxwell's equations, Relation with laws of Electrodynamics, Equation of continuity, Poynting vector theorem, Wave equation for E and H, properties of EM waves in conducting and nonconducting media , Skin depth.

Unit 2: Quantum mechanical aspects

[12]

Particles and Waves: Classical particles, Light as wave and particle, Wave particle duality and Uncertainty principle, Wave mechanics: The Schrödinger wave equation, wave mechanics of particles, Infinite potential well, Qualitative treatment of square wave potential with special reference to tunneling phenomenon, atoms and atomic orbital.

Unit 3: Statistical aspects

[10]

Classical statistics, Gaussian distribution, Poisson distribution, Fermi-Dirac, Bose Einstein, Maxwell Boltzmann statistics, Time and length scales of the electrons in solids, statistics of electrons in solids and nanostructures, Density of states of electrons, electron transport, Conductivity of metals.

4. Nanoelectronics [12]

Importance of nanoelectronics, Top down approach, Bottom up approach, Lithography, Nanostructure devices like resonant-tunneling diode, electrons in quantum wells, electrons in quantum wire, electrons in quantum dots, Quantum dot applications, Flash Memory.

Recommended Books:

- George W. Hanson "Fundamentals of nanoelectronics", LPE, Pearson Education
 V. Mitin ,Viatcheslav A. Kochelap , Michael A. Stroscio Vladimir
- "Introduction to NanoelectronicsScience ,nanotechnology , Engineering and Applications"
 Cambridge University Press 2008
- 3. Ben G. Streetman "Sanjaykumar Banerjee "Solid State Electronic Devices", 6th Edition
- 4. Kraus and Fleisch "Electromagnetics with applications" McGraw Hill, 5th edition
- 5. Electromagnetics by B.B. Laud, Wiley Edition
- 6. Donald A.Neaman, "Semiconductor Physics and devices" 3rd edition TMH

Nanoelectronics promises to improve, amplify of partially-Substitute for the well-known field of mi croelectronics. The prefix micro denotes the one millionth & used to indicate smallest features of a Conventional electronic device having length Scales approximately a mi crometer. The prefix hand denotes one billionth. Thus, in nanoelectronics the dimensions of the devices should be thousand times smaller than those of microelectronics. Atoms, DNA, proteins, viruses & transistors are all broadly classified as nanoscale objects. (within the factor of 100 of a nanometer) Top - Down Approach :-Top-down approach refers to slicing of Successive Cutting of bulk material to get nano size particles. e.g. Milling. The biggest problem with top down approach is imperfection of Surface Structure, significant Crystallographic damage to the process pattern. This imperfection leads to extra challenges in the device design of fabrication. But this approach leads to the bulk production of nanomaterials. As the feature size is reduced towards a nanometers, more & more purely quantum effects begins to emerge. e.g. when the gate oxide thickness of a metaloxide-semiconductor FET (MOSFET) goes below

1 - 2nm, significant tunneling through the gate oxide

The disadvantage is that as the feature size is reduced, costs increases Bottom - up approach :-Bottom - up approach refers to the build up material from the bottom atom by atom, molecule by molecule or cluster by duster. Colloidal dispersion in Synthesis of nanoparticles. Bottom up approach promises for better chance to obtain nanostructure with less defect. & more homogeneous, Lithography:-Lithography is the process of using electromagnetic energy to transfer a pattern from a mask to resist layer deposited on the Surface of a substrate (called as water) to form an electrical circuit. Lithography Process Steps: A photosensitive emulsion called a photoresist is applied to the water (mostly silicon water). Optical energy (light) is directed at a photomask Containing Opaque (non-transperent) & transparent regions that correspond to the desired pattern. The light that passes through the photomask reacher, the water, illuminating the desired pattern on the resist.

b) In a positive photoresist, the resist material is initially insoluble, & through chemical reaction when exposed to light, becomes soluble. When the water washed with a solvent, the areas that were exposed, to the Illumination dissolve, & the unexposed areas Following steps may be performed to transfer the pattern from the resist to the water For example, a] Etching may be used to remove Substrate material. The photoresist resists the etching & protect section of the water that it covers. After etching the resist is removed, leaving the desired structure. b] Material may be deposited, e.g. metallization onto the water. Then the photoresist can be removed. leaving the deposited material in areas that were not covered by the resist. Doping can occur, e.g. a beam of dopant ions can be accelerated towards the water. The resist blocks the ions from reaching those regions of the water Covered by the resist of thus creates regions of doping in areas not covered by the resist. This is Known as ion implantation Importance of nanoelectronics: Consumers have become used to electronic products becoming simultaneously Smaller & cheapers. 4 yet more powerful.

2.1		
<u>)</u>		A SELECTION OF STREET
<u> </u>	<u>2</u>]	This trend is the desire for companies to be competitive
<u> (</u>)		of reflects the broad wish of Consumers for Smaller,
_ \	,	faster, cheaper & better electronic products.
٤).	3]	The reduction in product size is due to reducing the size
ر د		of indivisual components like transistors. This leads to
-)-		improved functionality, as more devices can be packed into
- 7	# 0	a given area.
3	4)	The economic advantages of small device size since
		the Cost of integrated circuit chips is related to the
\		number of chips that can be produced per silicon water.
-		in Higher device density leads to more chips per water
32	2	4 reduced Cost.
7	5)	Includes possibility of ultrasmall, low-power electronic
		products, such as Communication of Computing devices of
		embedded sensors.
		Ch. II.
-/	71	Particles & waves:-
		classical particles:
2 4		A particle can be characterized by the momentum
-)-		Vector p & the kinetic energy E that depends on the
-)-		momentum. The change of momentum with time is
(-)		defined by Netotonis and law: $dp = f $
<u>\$</u>		dt
- 7	,	where, t = time f f = external force.
)	**	If the force is absent, then dp/dt = 0 i.e.
3		p = Constant. This is called as momentum Conservation
		law Valid for a mechanical system in the absense of
).		external forces.
_)		
)		

A De Privation

e i i karangéa

In classical mechanics, we assume that any)
particle has a very small size in Comparison)
with the space where the particle is located.)
Such a particle 15 called as point particle.)
The Co-ordinate vector 2 of a point particle	_)
le the particle relacity 19 are related by	_)
de = 9 2)
dt	_)
To obtain the relationship among the velocity 19 &	- }
momentum p & the energy of a particle E,	- ·)
Calculate the power associated with the force F.	_ `
multiply the eqn (1) on both sides by U	·
, v dp = fv.	- 1
dt	? ;
fu is equal to the rate of energy change dE/dt	, ;
: dE = fu	
dt	
: dE = 0 dp 3)
dt dt	—
: 0 = dE x dt	
dt dp	
$\therefore 0 = dE \qquad - Q$	
dp	
Derivative wirt. the Vector p also gives the)
Vector 19 with Components	
$U_{\chi} = dE', U_{\gamma} = dE + U_{\gamma} = dE$	_)
dpx dpy dpz	-)
Now Consider an important Case that particle is	- ' '
moving in a potential field.	- }
	_

The force is defined as derivative of a potential V(2) with respect to particle coordinate The vector operator $d = \{d, d, d\}$ $\frac{d}{dx} = \nabla (gxad)$ dr is called gradient of function Ucroine. ▽७(と). ·· from eq^ 2,

v dp + dv dr +

dt dr dt $= d \left(E + U(x) \right) = 0$.. The Value of the Kinetic energy plus Potential energy H = E + U(2) - 5represents total energy of the particle. The total energy of a particle in a potential field does not change during its motion. : From the law of energy Conservation, dH = 0. when H is considered as a function of two variables pfz, it is called the Hamiltonian function or Hamiltonian. A point particle moving in free Space may be characterised by a mass m & by the K.E. $H = \frac{p^2}{200} + U(2)$

classical waves :classical waves include sound waves in air, sea waves, & elastic waves in solids, electromagnetic waves, & gravitational waves. In classical physics, wave motion arises in extended Continuous media with an interaction between nearest elements of the medium Such interaction gives rise to the transfer of a distortion from one element to another of to a propagation of this distortion through the medium.) consider a model of one-dimensional medium, elements of which are represented by "atoms") Connected by massless Springs. Vibrations in Such a linear atomic chain are governed by the laws of classical mechanics. If the chain is infinitely long, let the equillibrium distance between atoms be a. Thus,) the equillibrium position of the nth atom is Zn = na, of the displacement of this atom from its position) is denoted by Un. n-2 n+1 **n**+2 Zn-1= (n-1)a Zn zna Zn+1= (n+1)a Zn+2 = (n+2)a Zn-2= (n-2)a Fig!- of identical atoms of mass M The springs represent interatomic forces i.e. interaction between nearest elements of the medium. If the displacements of atoms from their equillibrium position are not too large, then

f = -Bu where u = change of spring length. B = spring Constant U 2 f = force exerted by the string. The total force In acting on the nth atom Coupled with its two nearest neighbors by two springs as, **y**)_ $f_n = -\beta (u_n - u_{n+1}) - \beta (u_n - u_{n-1}) - 2$ Hence the Newton equation of motion for the nth - 5- $M \frac{d^2 u_0}{d^2 u_0} = -\beta \left(2u_0 - u_0 + 1 - u_0 - 1\right) - 3$ D -This set of linear differential egns, egn 3 describes wave-like processes. Uncertainty Principle: Heisenberg's uncertainty Principle: Statement: - The principle States that one Cannot measure the position Coordinate of Corresponding momentum of the particle Simultaneously with arbitrar If Dx & Spy are the uncertainty in the simultaneous measurement of x - Coordinate of the Corresponding momentum, then according to Heisenberg's uncertainty principle, the product of uncertainties is always greater than or equal to Planck's Constant (h). : ∆x. △pg > h —— Similarly, Dy. Spy > h - $\xi \Delta z \Delta \rho_z > h$

/coierwisouce/	
The principle implies that if one tries to determine	
position Coordinate (x) more & more accurately i.e.	
$\Delta x \rightarrow 0$, then the momentum becomes more &)
more uncertain i.e. $\Delta p_e \rightarrow \infty$ & vice versa.	<u> </u>
one can never determine both of fpx as	
accurately as one wishes i.e. we can never have)
$\Delta x \rightarrow 0$ & $\Delta p_x \rightarrow 0$ Simultaneously. Thus the	
uncertainty product Dx. Spx Can never be made less	
than h.	
Precise mathematical Statement of the principle	,
States that,	
$\Delta x \cdot \Delta p_x > \frac{t}{2}$	
2	, ,
$\Delta y. \Delta py > \frac{t}{2}$	
2_	*
$\frac{4}{\Delta z} \Delta p_{z} > \frac{t}{\Delta z}$	·
	. ,
where, to = h Called modified Plank's Const	,
The 2nd Statement of the uncertainty principle	
is that it is impossible to Simultaneously describe	
with absolute accuracy the energy of a particle	
of the instant of time the particle has this energy	
If the uncertainty in energy is given by DE & the)-
uncertainty in the time by At, then the uncertaint	}
principle is described as,	
$\Delta E \cdot \Delta t > h$	1,5
where h = Planck's Constant.)
	<u> </u>

```
* Have Particle D
2 )
          Illustrative Examples:
          A 10 gm bullet shoots through a Cylindrical tunnel
          of 5 cm diameter. What would be the uncertainty
          in the velocity of bullet?
                   Given: \Delta x = 5 \text{ cm} = 5 \times 10^{-2} \text{ m}
                               m = logm = lox lo^{-3} kg
                      Δx. Δpx ≈ h
                   △x·m △Vx ≈ h
                      AVx = h
                                  m A X
                                6.6 XIo-34
                                  10×10-3 ×5×10-2
                              6.6 × 1-34+4
                  \Delta V_{x} = 1.3 \times 10^{-30} \text{ m/s}
           The error in Vx is too Small to be measured
          experimentally. : The error is as good as zero.
           Suppose the instaneous position of 1 gm particle is
           measured within maximum possible error of 10-3 cm.
          What is the error in the Corresponding velocity?
               Given: - m = 1gm = 10-3 kg.
                          \Delta x = 10^{-3} \text{ cm} - 10^{-5} \text{ m}.
              Now, dx. Dpx = h
                   : Da. m Dvz & b
                   ΔV<sub>X</sub> = _
 )
                                 m \Delta X
 )
               \Delta V_{x} = 6.6 \times 10^{-34}
```

	COEDEN JONCH)
	$\Delta V_{\chi} = 6.6 \times 10^{-26} \text{ m/s}.$)
	The error in velocity is too Small to be detected	<u>)</u>
:	experimentally.)
)
3]	The es are allowed to pass through a crystal)_
	with lattice Constant 1A° What is the uncertainty)
	in its Velocity?)—
	Given :- $\Delta x = 10^{-10} \text{m}$.	厂
· · · · · · · · · · · · · · · · · · ·	Now , $\Delta V_{R} \simeq b$	j
	$m \Delta \%$ $= 6.6 \times 10^{-34}$)
	$9.1 \times 10^{-31} \times 10^{-10}$	7
	$\Delta V_{\chi} = 7.3 \times 10^6 \text{ m/s}$)
!)
	If $\Delta V_{x} = 7.3 \times 10^{6} \text{ m/s}$, then the velocity V_{x} itself)
	must be at least of this order.)
		<u>}</u>
4)	Estimate the size of the atom using uncertainty	<u>}</u>
	principle.)
	J	<u>)</u>
		}
	Let us take this energy to be E = 10 eV.	<u>}</u>
	$F = 10 \times 1.6 \times 10^{-19} \text{ J} (1eV = 1.6 \times 10^{-19} \text{ J})$ $= 1.6 \times 10^{-18} \text{ J}$	
) <u> </u>
	Now, $E = \frac{p^2}{2m}$)
	$P = \sqrt{2mE}$	<i>r</i> −
	The e may have forward or backward momentum) -
	along the given direction.	<u>,</u>
	J	·
)

```
\therefore \Delta p \approx p - (-p) = 2p.
                  \therefore \Delta p \approx p = \sqrt{2mE}
- 7-
               \Delta x = 6.6 \times 10^{-34}
                         \sqrt{2 \times 9.1 \times 10^{-31} \times 10^{-18} \times 1.6}
                  \Delta \chi = 3.87 \times 10^{-10} \text{ m}
           Thus, the diameter of the atom is about 10-10 m.
           This is in good agreement with experimental
           measurements of atomic diameter.
)
)
            Prove that - DE. Ot >h
              Proof: - we have,
                        \Delta x \cdot \Delta p_x \approx h
                      E = p^2 for motion along X-axis.
                      \Delta E = 2p_x \cdot \Delta p_x
                     DE = Vx-Dpx
                    DE. At = Vx. Apx. St
                    But Vx. St = Sx
                    DE- At = Ax. Apx ≈ h
               : AE. At ≈ h
               In general, SE. St >h
 )
```

	moving with velocity 105 m/s.
	Given : $\Delta V_{\alpha} = 10^5 \text{ m/s}$.
	Now,
4	Δx. Δp _x ≈ h
	$\therefore \Delta \mathcal{R} \cdot m \Delta V_{\mathcal{R}} \simeq h$
······································	:
:	m d V &
	$= 6.6 \times 10^{-34}$
!	9.1 × 10 ⁻³¹ × 10 ⁵
	$= 0.725 \times 10^{-34+26}$
	$\Delta x = 0.725 \times 10^{-8} \text{ m}$
7]	Determine the Current density in Copper wire
_	of diameter 1 mm Carrying a Current of 3-142 A.
	What is the Smallest possible uncertainty in position
	of an et moving with velocity 106 m/s.
	i) To calculate Current density of Cu wire;
7	Current density (J) = I
	A
	Given: $- d = 1 \text{ mm} = 10^{-3} \text{ m}$. $\therefore 2 = 0.5 \times 10^{-3} \text{ m}$
	I = 3.142 A.
	:. Area (A) = TT 2 ²
	$= 3.142 \times (0.5 \times 15^{3})^{2}$
	<u> </u>
	: Current density (J) = I
·	A
	= 3,/42
	3.142 × (0.5 × 103)2

```
E 3 nTT2 h2
                          0-25 X156
                          106 = 4 \times 10^{6}
- ),.
                     J = 4 \times 10^6 \text{ A/m}^2
<del>-</del> )-
           11) To Calculate un tainty in position of an e.:-
                  Given :- avx = 106 m/s.
                Now, ax. Opx 2 h
                  ∴ Al. m AV2 ≈ h
                   ∴ DB ≈ h
                                   m avx
                                   6.6 X1534
                                  9.1 × 10<sup>31</sup> × 10<sup>6</sup>
                                0.725 \times 10^{-34+25}
                               0.725 \times 10^{-9} \text{ m}
                              = 0.725 \text{ nm}
           Calculate the ground State energy of an e
           confined to move freely between two ends Separated
           by (10 A). Cm = 9.11 X10-31 kg).
               Given :- m = 9.11 ×10-31 kg.
                          a = 10A° = 10 × 10-10 m. = 10 m
                The ground state energy of et is given by
                    E_1 = \pi^2 t^2
                                      2ma 2
```

```
= (6.6 \times 10^{-34})
                               8 x 9.11 x 10-31 x (10-9)2
                  43.56 X10-68
                                        0.5976 × 10 68+18
                 72.88 X10-31-18
                0.5376 Xlo-50
An e has speed of 6000 m/s with an accuracy
of 0.05%. Calculate uncertainty with which the position
of e can be located.
                                                         }—
       Velocity of et is,
           Avz = 6000 m/s with accuracy of 0.05 %
                                                         )
          ΔVx = 60$$ × 0.05
                            1 ø ø
               = 3.00 m/s
          avx = 3 m/s
   Now,
              Dx. Dpx ≈ h
                                                         )
             sx. m svx ≈ b
                        mdVx
                       6.6 ×10-34
                       9.1 x 10-31 x 3
                       0.2417 × 10-3 m
                      0.2417mm
             \Delta \mathcal{X}
An e has speed of 2 × 104 Cm/sec accurate to 0.01%.
What is uncertainty in the position of et.
```

```
Velocity of et is,
                 \Delta V_{g} = 2 \times 10^{4} \text{ cm/sec} = 2 \times 10^{4} \times 10^{2} \text{ m/s} = 2 \times 10^{2} \text{ m}
+18
                      with accuracy of o.ol /
- J.-
-7
                                     2 X 0.01
                           ax. apx = h
                       \Delta x \cdot m \Delta v_x \approx h
                          \Delta x = b
)
                                       m \triangle V_{\mathcal{X}}
                                     6.6 X15<sup>34</sup>
                                       9.1 X1031 X 0.02
                                         6.6
)
                                        0.182
                                        36.26 X10-3
                                       36.26 mm
       *
             Photoelectric effect: - When light is made incident on a
             metal Surface, ets are emitted from the surface.
            This effect is called photoelectric effect. If the ets emitted
             are called photoelectrons.
                    If these ets are allowed to flow in a closed circuit
             the Current obtained is called photoelectric Current.
             Some of the experimental observations about the
            photoelectric effect are :-
```

<u>aj</u>	Photoelectric Current increases with increase in the
	intensity of incident light.
<u>b</u>]	Photoelectric effect is not observed if the frequency
	of light (1) is less than Certain frequency (2),
	no matter how intenser is the tight incident beam.
	The freq To is called threshold freq? Its value depends
	upon the nature of the emitting Surface.
c)_	There is almost no time-lag between the incidence
	of light & emission of photoelectrons. i.e. the
	photoelectric effect is observed instantaneously.
<u>d)</u>	The photoe s have different kinetic energies in the
	range 0 to Emax. Max Kinetic energy of photo-es
	is proportional to the frequency of light & is independent
·	of intensity of incident light.
	Wave theory does not predict the existence
	of threshold freq". However, emitting Surfaces of different
	materials possesses different threshold freques. Thus,
	classical wave theory of light fails to explain
	photoelectric effect Satisfactorily.
<u> </u>	· · · · · · · · · · · · · · · · · · ·
*	Wave - particle duality:
	Dual nature of light:
	The electromagnetic radiation Such as light
· · · · · · · · · · · · · · · · · · ·	has two aspects, a wave aspect & a particle aspect.
	Interference, diffraction of polarization of light can be
· .	explained if the radiation is assumed to consist of
	waves having frequency of & wavelength 2.
	on the other hand, photoelectric effect or
	Compton effect can be explained only if it is assumed

'	-	
)	<u>;</u> ;	
		a Detaile of the Control of the Con
-)=		t grit, tt er i frie de termination de la companya de la companya de la companya de la companya de la companya El latronomia
-)-		that radiation Consists of particles Called photons
- ")	<u> </u>	with energy E & momentum p.
- }		Thus electromagnetic radiation has dual nature.
-) .		waves & particles, carred wave particle duality of
-		electromagnetic radiation.
<u>5</u>		Let us consider dual nature of matter we will
-		See that moving particles like ets or protons exhibit
		the wave particle duality.
)		
)	-	De-Broglie's Hypothesis: - Matter waves:-
		Waves & particles are only the two modes of
)		energy propagation in nature. Like radiation, matter
lent	·. · · · · · · · · · · · · · · · · · ·	Should also exhibit wave particle duality. That is matter
)		(particles) should exhibit wave like behavior under
16.		Certain proper Condition.
<u>()-</u>		On the basis of this argument, Louis De Broglie
)		(1924) put forward the hypothesis
-)		Matter Considered to made up of discrete particles
- ,)		such as atoms of molecules, these particles can exhibit
-)		wave like behavior under proper conditions".
-)		
		<u>De Broglie's equation:</u>
_		The radiation is not being emitted in Continuous
ct.		fashion, but in discrete bundles of energy. These bundle
be		or packets of radiant energy are termed as quanta
		or photons.
		The energy of photon is given as,
_)		$E = h \vartheta$ — ①
)		where, h = Planck's Constant
)		V = freque of radiation.
) †		
<u>)</u>		

i		
	According to mass-energy relation of Einstein, the	Ì
	energy is given by,)
	$E = mc^2 - 2$)
	where, m = mass of the photon)
	C = Velocity of light)
; ;	from eq?5 (1) & 2) we have,)
	$mc^2 = h\eta$	ì
1	$m = h\gamma$)
	c^2	-,
	But since the photon is always in motion & velocity of	;
	photon is always equal to velocity of light it must	7
	bave momentum similar to that of moving particle	}
	i we can write momentum of photon,	}
	$p = mc = bv \cdot c$)
	, c ²)
	$\therefore p = h\vartheta - 3$)
	,)
	But we know that)
	Velocity = frequency X wavelength.)
	$C = \Im \lambda$):
	$ \frac{\partial}{\partial x} = C - G $)
	λ	<u>) </u>
	from egns 3 & 4 we have,	<u>)</u>
, t	momentum of photon = $p = hv = h \cdot c$	<u>)</u>
	ζ ζ λ)-
	$p = h \text{or} \lambda = h - 5$) —
	L A P)
	From eq 5, we see that wavelength > of the	<u> </u>
	radiation is related to the momentum p of photon	,
	through Planck's Constant, h. Thus eq 5 Correlates) \
		ر
		J

wave characteristics & with the particle characteristic: p through the Planck's Constant h. I is the Wavelength Called De Broglie wavelength. According to De Broglie idea, eq 5 must be true for photons as well as for the material particles. Thus if a particle of mass m is moving with a velocit U, it has a momentum P = mU & the wavelength A associated with the moving particle will be given by $\frac{\lambda = h}{p} = \frac{h}{m_1}$ Thus according to De Broglie, a wavelength A is associated with moving body of mass m & the wavelengt of the wave is given by eqn 6. (a moving body must shows wave characteristics. such a wave associated with moving particle or with a body is called a matter wave or De Broglie wave.) It the particle is moving with non-relativistic Velocity (UKKC), then kinetic energy of the particlei. $E = 1 m u^2 = (m u)^2 = p^2$ egn 6 becomes,

-)-

)

)

)

	COL. / 720 COIDEN TOUCK	<u> </u>
_	Illustrative Examples:	
	Calculate the de Broglie wavelength of an e moving	
- · · · · · · · · · · · · · · · · · · ·	with a velocity 1/20 th of the velocity of light.	<u> </u>
>	The de Broglie wavelength is given by,	j <u>)</u>
	$\lambda = h$	 <u> </u>
	mV	
	Velocity (19) of $e^{\Theta} = \frac{1 \cdot C}{20} = \frac{1 \times 3 \times 10^8}{20}$)_
	,)_
	$y = 1.5 \times 10^{7} \text{ m/s}.$ $\therefore \lambda = 6.625 \times 10^{-34}$	-}-
<u>.</u>	$9.1 \times 10^{-31} \times 1.5 \times 10^{7}$	5
	$= 0.4845 \times 10^{-10} \text{ m}$	-)
<u> </u>	$\lambda = 0.4845 \text{ A}^{\circ}$	7
	<u> </u>)
2]	Calculate de Broglie wavelength of an e which has)
	Kinetic energy equal to 15 eV.)
	we have,)
· · · · · · · · · · · · · · · · · · ·	$\lambda = h$ where $E = kinetic energy$)
	$\sqrt{2mE}$)
:	$\lambda = 6.625 \times 10^{34}$)
	$\sqrt{2 \times 9.1 \times 10^{-31} \times 15 \times 1.6 \times 10^{-19}}$	
	$= 0.312 \times 10^{-9} \text{ m}$)
	$\left[\lambda = 3 \cdot 12 A^{\circ}\right]$	_)_
3]) _
<u> </u>	consider an etavelling with a velocity of 107 cm/sec)-
	Calculate de-Broglie wavelength of e.	}-
	$(m = 9.11 \times 10^{-31} \text{ kg}, h = 6.625 \times 10^{-34} \text{ Js}).$)-
	ine de-broglie wavelength is given by,)_
·	p	
	$0 = 10^7 \text{Cm/sec} = 10^7 \text{X} 10^{-2} \text{m/sec}$)
)
>	The de-Broglie wavelength is given by, $\lambda = h$)

```
6.625 X 10-34
                     9.11 × 10-31 × 107 × 10-2
                      0.7272 X 10-34+31-5
                      72.72 X 10-10 m
                    72.72 A°
Calculate the wavelength associated with a particle
of mass 2 gm moving with velocity of 3 km/sec.
       Given: - m = 2 gm = 2 x 163 kg
                  19 = 3 \, \text{km/sec} = 3 \, \text{X} \, \text{10}^3 \, \text{m/sec}
   The de-Broglie wavelength is given by
                \lambda = \underline{b} = .
                      6.625 X10-34
                        2: × 10-3 × 3× 103
                       1.104 × 10-34 m
Calculate the de-Broglie wavelength of et moving
with velocity of 1/10th of velocity of light.
        (mass of e = g.) × 10-31 kg).
   Given :- m = 9.1 × 10-31 kg
              0 = 1 \times C = 1 \times 3 \times 10^8 = 0.3 \times 10^8
                                                       ന്ത/ട
   \lambda = h = 6.625 \times 10^{-34}
                   9.1×10-31 × 0.3×108
            mu
```

```
-34+31-8
               6.625
               27.3
               0.242 ×10-11
Calculate the de-Broglie wavelength of free e
whose energy is loo ev.
                   = 9.1 ×10<sup>-3</sup>1 kg
                E = 100 eV = 100 x1.6 x10 19 J
   The de-Broglie wavelength is given by
                                                              1
                       \sqrt{2mE}
                         6.625 X1034
                       2 x 9.1 x 10-31 x 100 x 1-6 x 10 19
                          6.625 X 1534
                        √2132 ×10-50
                                        -34+25
                           6.625
                           53.96
                         0.122 × 10 m
                                                              )
                         1.222 A°
                                                              )
Find the de Broglie wavelength of neutron, whose
energy is 1eV? (Given; mass of neutron = 1.676 x 1022 kg)
      The de Broglie wavelength is given by
                       2mF
                       6.625 X 10-34
                     2 \times 1.676 \times 10^{-22} \times 1 \times 1.6 \times 10^{-19}
                       6.625 X 1534
                     5.3632 x 10-41
```

6.625 X 10-34 0.53632 X 10-40 6.625 0.7323 9.046 × 10-14 m Wave mechanics:-The Schrodinger wave equation: In quantum mechanics, we cannot talk of well-defined position & momentum simultaneously We know that moving particles exhibit wave-like moving characteristics. A wave group is associated with apparticle) A mathematical function which describes wave-group is the wave function $\psi(\overline{2},t)$. As particle (or a system of) particles) moves under the action of external forces, the wave function Changes with time. The motion of a) particle is described by the wavefunction $\psi(\vec{z},t)$. __) The mathematical eqn of motion in terms of $\psi(z,t)$. The eqn is now called as 5 chrodinger's wave eqn. The term 'wave mechanics' usually refers to the mechanics based on Schrödinger's wave eqn. The wave fur 4 (3), to associated with a particle is a function of space Coordinates x, y, Z & time 't'. If 'Y' is to be associated with the particle, then it must be zero where the particle is not likely to be found. Similarly it must have a non-zero value where there is some possibility of finding the particle. Thus 'V' must be related to probability of finding the particle at a given point (x, y, z) 4 at given time (t).)

However, 'V' itself Cannot be directly related to probability. Because, in general, wave fur 'y' which represents wave-group is obtained by Superposition of number of monochromatic waves. The addition Of such monochromatic waves may be negative at a given Space point (2, y, z) but probability Can never be negative. : Probability is always real & positive: $|\psi|^2 = \psi \psi^*$)__)-is taken as measure of probability of finding the Ì particle at the point (x, y, z) in space at an instant) 't'. The quantity 1412 is carred the probability) density. The probability that the particle be found) Somewhere in a small Volume element dV' around the given point at given instant is 1412 dV.) Larger the value of 1412, greater is the }. chance of finding the particle there at that instant. Ì As long as 1412 is not equal to zero, there is) a definite chance of finding the particle at the given point at given time. The particle under consideration will always be found somewhere, total probability is always equal to unity i.e. | yy* dv = The integral is carried out over the entire space The above Condition on 'Y'is called the normalization Condition. The Schrodinger A Equation In microscopic (nanoscopic) phenomena, we cannot talk of definite position & definite momentum for a particle at the same time. We have to talk in terms

ž	5-14	15 (Obj	1 1
	15:		1 A.	5
Ì	500	984	1000 1000	34 }

of probability. It is the wave function y (x, y, z, t) which Contains all the information about the probabilistic behaviour of the particle. Schrödinger formulated a wave eqn for ((x, y, z, t). This eqn is called Schrodinger equation. We know that a monochromatic wave propagating in the tre x-dirn is represented by, $\Psi(x,t) = A \exp \left[i(kx-wt)\right] - (1).$ where, A = amplitude of the wave. This wave corresponds to a free particle with momentum p=h in the x-dir. The Variable k'& 'p' are related by p = tok where to = h. Also E = tw. Energy E 4 momentum p are related by, i eq D can be written as, i(px-Et)/h $\psi(x,t) = Ae^{i(P/t)x} - \frac{Et}{t}$ Differentiating above eq with respect to x we get, $\frac{\partial \psi}{\partial x} = A \frac{i}{h} p \exp \left[i \left(\frac{P}{h} x - \frac{E}{h} t \right) \right]$ Lpy -

-).

_)_

)

-)-

Differenting above egn 3 Differentiating eq? 76) LEW t d4) it ay Total energy E of a particle is sum of K.E. potential energy V E = K.E. + P.E. 2m

multiplying above eq by 4. $E\Psi = P^2\Psi + V\Psi$ from eq? 5 (4) & 5), we get $\frac{i + \partial \psi}{\partial t} = - + \frac{1}{2} \frac{\partial^2 \psi}{\partial x^2} + V\psi$) This is called as schrodinger's time dependent) eqn. It is one dimensional Two-dimensional Schrodinger time dependent eqnis Also, 3-dimensional eq is given by, it $\partial \psi = -t^2 \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right) + V \psi$ Schrodinger Time Independent Equation: Schrödinger time dependent eg? is given by, $\frac{i \pi}{\partial t} = \frac{-\pi^2}{2m} \left(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} \right) + V\psi$ we will consider 1-dimensional Schrodingerwaveeq. $\frac{1}{2\pi} \frac{1}{2\pi} \frac{\partial \psi}{\partial x^2} = \frac{-t^2}{2\pi} \frac{\partial^2 \psi}{\partial x^2} + V\psi - D$ This equation can be Solved by using method of Variable separation.

)

 $y = \psi(x, t) = \psi(x) \phi(t) - 0$ Substituting eq? (2) in eq? (1) we get,

it $\frac{\partial (\psi(x) \phi(t))}{\partial t} = \frac{-t^2}{2m} \frac{\partial^2}{\partial x^2} (\psi(x) \phi(t)) + V \psi(x) \phi(t)$

it $\psi(x) = \phi(t) = \phi(t) - h^2 = \phi(x) + V\psi(x)$ $\frac{\partial \psi(x)}{\partial t} = \frac{\partial \psi(x)}{\partial t} + \frac{\partial \psi(x)}{\partial t} + \frac{\partial \psi(x)}{\partial t} = \frac{\partial \psi(x)}{\partial t} + \frac{\partial \psi(x)}{$

it $\frac{\partial \phi(t)}{\partial t} = -\frac{\hbar^2}{2m} \cdot \frac{1}{\psi(x)} + \frac{\partial^2 \psi(x)}{\partial x^2} + \frac{\partial \psi(x)}{\psi(x)}$

it $\frac{\partial}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x) + \sqrt{\omega}$

In this eq, R.H.s. depends on it only & litts depends only on to However it to arre, independent of each other. Hence, eq 3 Can be true only if each side is equal to some Constant we denote this Constant by E. It has the dimensions of energy of the system.

 $E = ih \frac{\partial \phi(t)}{\partial t}$

 $\frac{1}{2m} = \frac{-t^2}{2m} = \frac{\partial^2 \psi(x)}{\partial x^2} + V$

 $\frac{3^2\psi(x) + 2m}{3x^2} (E-V) \psi(x) = 0 - 9$

This eq? is called as schrodinger Time independent eq?

Figenvalues & Figenfunctions: Suppose "A" is an operator, of f (x, y, z) is a function Such that, $A + (x,y,z) = \alpha + (x,y,z) . - (1)$ where 'a' is a scalar. In the above eqn, operator 'A' has a typical action on 'f' which results in 'f' itself multiplied by a Scalar. The eq? of the above type is called an eigenvalue eq? for operator A. The function f(x,y,z)is Called the eigenfunction for of A & a is called the eigenvalue of A Corresponding to eigenfunction f. In quantum mechanics, we often deal with the Hamiltonian operator (A). The eigenvalue ego for Ais; H Y(え) - EY(元). This is nothing but time - independent Schrödinger Equation. The eigenvalues & eigenfunctions are called energy eigen values & energy eigenfunctions. Similarly, for momentum operator we have momentum eigenvalues f momentum eigenfunctions. In fact, an operator is associated with every physical quantity & each Such operator has its own set of eigenvalues & eigenfunctions. Applications of Schrodinger Equation: Constant potential (Free Particle) (Electron in free Let us consider the motion of a particle in a field of Constant potential Vo. since force F = - VV, Constant potential means that there is no force acting on the particle. Such a free particle will keep on moving in a given dir (along X-axis or Y-axis or Z-axis) who with constant momentum p = mv

..)

	$E = \frac{1}{2} m \omega^2 + V_0.$
The Cons-	tant Vo may be taken to be zero.
Then,	tant Vo may be taken to be zero. $E = \frac{1}{2} \text{ my}^2.$
classical	ly the particle can move with any velocity
between	0 to 00. Hence, energy of the particle
	e any value within this range. Thus,
	the energy spectrum of free particle is
Continuous	
	w, the quantum mechanical motion of the
	Can be obtained by Solving the Schrodinge
	Since potential is time - independent (V=0)
	der 11me-independent Schrödinger equation.
let us as	sume that the motion of the particle is al
X -axis.	
	$-\frac{t^2}{h^2} d^2 + V(x) + V(x) = E + Cx$
<u>``</u>	
	$\frac{2m}{d\chi^2}$
	V=0 in the present case.
	V=0, in the present case.
	V=0, in the present case.
	V=0, in the present case. $-t^2 d^2\Psi = E\Psi(x)$ $2m dx^2$
	V=0, in the present case. $-t^{2} d^{2}\Psi = E\Psi(x)$ $2m dx^{2}$ $d^{2}\Psi + 2mE\Psi(x) = 0 $ (2)
But	V=0, in the present case. $-t^{2} d^{2}\Psi = E\Psi(x)$ $2m dx^{2}$ $d^{2}\Psi + 2mE\Psi(x) = 0$ dx^{2} dx^{2} t^{2}
	V=0, in the present case. $-t^{2} d^{2}\Psi = E\Psi(x)$ $2m dx^{2}$ $d^{2}\Psi + 2mE \Psi(x) = 0 \qquad 2$ $dx^{2} t^{2}$ $k^{2} = 2mE \qquad 3$
But	V=0, in the present case. $-t^{2} d^{2}\psi = E\psi(x)$ $2m dx^{2}$ $d^{2}\psi + 2mE \psi(x) = 0 \qquad 2$ $dx^{2} t^{2}$ $k^{2} = 2mE \qquad 3$
But	V=0, in the present case. $-t^{2} d^{2}\Psi = E\Psi(x)$ $2m dx^{2}$ $d^{2}\Psi + 2mE\Psi(x) = 0 \qquad 2$ $dx^{2} t^{2}$ $k^{2} = 2mE \qquad 3$

)	i i i cue a roucai
	In case of steady states the time part of the
_)	wave function $V(x,t)$ is always given by,
-	-LEt/t
, , , , , , , , , , , , , , , , , , ,	eiE+/+
- 	Then, $\psi(x,t) = \psi(x)e^{-iEt/\hbar}$
, <u> </u>	The energy of the free particle is,
	$E = \hbar \omega$
	Then, -iwt
	$\Psi(x,t) = \Psi(x)e$
)	The two solutions of egn (2) are:
)	The two solutions of eq 2 are:- ei(kx-wt) & e-i(kx-wt). The term e
)	represents a monochromatic wave travelling in the tv
\sim	X-dir 8 the term e-i(kx-wt) represents a wave
)	travelling in the negative X-dirp.
)	Thus, for a particle moving in the forward X-dir,
٥١١٩	the wave associated with it is represented by
3	the wave associated with it is represented by, $y(x,t) = Ae^{i(kx-wt)}$ where 'A' is a normalization
→	Constant. The wavelength associated with the particle is;
)	$\lambda = 2\pi$
_)	, , , , , , , , , , , , , , , , , , ,
-)	If we put $p = hk$, then $\lambda = h/p$, as per the
-)	de Broglie's hypothesis,
	Probability density is given by:-
	$f(x,t) = \psi * \psi = A * A = A ^2 \text{(constant)}.$
	Thus, The probability density is Same everywhere of
) A	it is same at all times.
)	
.)	
ane	
)	
,	

.)

:)

}

.)

2]	Infinite Poten	tial well :-)
	Schrodin	ger time In	dependent differential equ	<u> </u>
	is given by,		•	<u> </u>
:	7	$d^2\psi + 2m$	(E-V) 4 =0 - ()	<u> </u>
	:	dx^2 t^2		
	where,	· · · · · · · · · · · · · · · · · · ·		<u> </u>
J	Y = wav	e function of	a particle under motion.	
:	£ = T±s	Kinetic enen	rgy & is moving under a	
	force field who	se potential i	is obtained by V.	
	This is also (alled Schmod	inger Stationary State	
	differential eq	<u>n</u>		
			moving in a infinitely	
	deeped well i	e as Shown	in tollowing fig.	
	∞ 1	↑ V(x)	1 60	
- - -	2			
	n	7		1
· · · · · · · · · · · · · · · · · · ·	Region-I	Region III	Region III	
		7-0		
<u></u> :	''. X	= 0	Z=a.	
				- 1
			V=	
·			a particle is trapped in a	<u> </u>
			except that at the	
·	.	0 9 x = a,	where it is infinitely	<u> </u>
	large.	V = 0	0 < z < a	
				1
		, <u> </u>	x=0 & x=a	
·	: Applying	to eq'(),		-

. 1

```
`}
__ )__
                    + 2m (E-0) \Psi = 0.
_ )_
7 7
                    + 2mE \psi = \omega
                 Let 2mE - K2
              eqn 2 becomes,
Let put d - D
             D^2 \Psi + K^2 \Psi = 0
`)
              (D^2 + k^2) \psi = 0
           since, y cannot be Zero because it is the wave
)
           function of a particle.
              D^2 + k^2 = 0
)
                    D^2 = -k^2
)
              D = \pm iK
                   <u>.. dΨ = ikψ</u>
              By solving (1),
                       \frac{d\psi}{\psi} = ikdx
               Integrating on Both sides,
                     dy - jikdz
             : log = V, = ikx + log A:
)
            \frac{1}{2} \log_{\theta} (\Psi_{1} - A) = ikx
```

J==

```
A * sinka = 0
                  Sinka = 0
                   Kai = nTT
                            with n \pm 0.
                  = 1, 2, 3 ···· referred to as quantum no
                 2mE_{a^2} =
)
        E_n = n^2 t^2 T^2 with n = 1, 2, 3.
        We have particle energies E, E2, E3, E4. are the
        allowed energy States.
          : with energy E, it has a wave function 4.
              : Y = A* sinka with n=1, ka = nTT = TT
             : 4 = A* sign
                4 = A* sin 2TT with n = 2, Ka = nTT = 2TT
               43 = A* sin 3TT with n = 3, ka = nTT = 3TT
            4 50 on.
```


Consider the potential barrier function shown in the above fig. When the total energy of an incident particle is EXVo, assume that we have a flux of incident particles originating on the negative x axis travelling in the +x direction. In the region I, Potential energy is zero. et will have all energy as kinetic energy, then et will force a barrier at x = 0. The width of the barrie is 9. on the other side of potential barrier, 20>9, will have P.E. =0. Classically, e should bounce back from x=0 because total energy E of the et is EXX but quantum mechanically, there is a possibility that et will tunnel through the potential barrier & appear on the other side. To show this, we will solve the Schrodinger eq. To do this we divide the emotion into 3 regions TSt, Ind & III rd as indicated in fig. We will solve schrödinger eq in each region to obtain 3 wave functions in region I, II & III. : Applying Schrodinger eqn for Ist region, $\frac{d^2\psi_1}{dx^2} + \frac{2m}{h^2} \left(E - V \right) \psi = 0$ $d^2\psi_L + 2mE \psi = 0$ V=0, 2C<0 $i / \Psi_{\rm I} = A_1 \exp(ikx) + A_2 \exp(-ikx)$

where, 2mE = k2

-)

 $\overline{}$

)

for region II,

$$\frac{d^2 \Psi_{II}}{dx^2} + \left(\begin{array}{c} -2m \\ +2 \end{array} \right) \left(\begin{array}{c} V_0 - F \\ +2 \end{array} \right) \Psi_{II} = 0$$

$$\frac{1}{4} \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right) \left(\begin{array}{c} 1 \\$$

<u> </u>	Examples:-	
<u>'</u>	Calculate the ground state energy of an e	
-	Confined to move freely between two ends	
	Separated by 10 A°. (m = 9.11 × 10 ⁻³¹ kg.).)
	Given: m = 9.11 × 10-31 kg	<u>) </u>
	$a = loA^{\circ} = lo \times lo^{-lo} m = lo^{-g} m$	- }_
	The ground State energy of et is given by,	<u> </u>
	5 2 12	
	$E_1 = TT^2 + 5^2$: $t = h$	-)—
		- }-
	$\frac{1}{12} + \frac{1}{12} = \frac{1}{12}$	- ,-
	$= \pi^2 h^2 \qquad 4\pi^2$	-
	8T/2ma2	
	$= h^2$	
	8ma ²	
	$= (6.625 \times 10^{-34})^{2}$	}
	$8 \times 9.11 \times 10^{-31} \times (0^{-9})^2$) ——
	= 43.89 X10-68	;)
	72.88 × 10-31-18	.)
	$= 0.6022 \times 10^{-68+49}$	
	$E_1 = 0.6022 \times 10^{-19} \text{ J}$.)
)
*	$E_1(eV) = 0.6022 \times 10^{-19} J$	_)_
	1.6 × 10-19 C	۔ ـ يـ
	E ₁ = 0.37 eV	-)—
		<u>ra</u>
2]	Calculate the ground state energy of a particle of	·
	mass to go which is free to move between two	-) _ _
	ends separated by 10 Ao.	,
	· J) ⁻
)
i i)

```
Given: m = logm = lo x 10-3 kg
                         m = 10^2 \text{ kg}
                     a = 10 A0 = 10-9 m.
          The ground state energy of a particle is given by,
                       E_1 = T^2 \mathring{\chi}^2
                                                 h^2 = h^2
                              8TT2ma2
                               (6.625 X10-34)2
                               8 X 1X10 X (10-9)2
                               43.89 X10-68
                                8 X10-2-18
                              5.48 × 10-48 J
     3] A marble ball of mass 50 gm is performing to 4 fro
         motion with steady velocity between two ends Im apart,
        The period of motion is to seconds. What is the energy
         of the marble? Estimate the value of Corresponding
        quantum number (n).
            When the marble completes one cycle of motion
         the total distance covered is 2m.
                :. Velocity U = distance = 2 = 0.2 m/s.
                                      time
           Energy E = \frac{1}{2} m v^2
)
                      = 1 \times (50 \times 15^3)(0.2)^2 = 1 \times 2 \times 15^3
```

	เรื่อเอสสาอนิสสา
	$E = I o^{-3} J$
	Now, $E_n = TT^2 n^2 + h^2 = n^2 h^2$
	$2ma^2$ $8ma^2$
····	*
	$1. n^2 = 8ma^2 En$
	h^2
	$= 8 \times 50 \times 10^{-3} \times (1)^{2} \times 10^{-3}$
	(6.625 X 10-34)2
	$=$ 400 \times 10 ⁻⁶⁺⁶⁸
- :	$(6.625)^2$
	$h^2 = 9.11 \times 10^{62}$
	$\frac{1}{2} = \frac{3.01 \times 10^{31}}{2}$
*	The Instruments had made possible bottom up
	approach possible in Semiconductor technology are:
IJ	Scanning electron microscope (SEM)
2)	Scanning tunneling microscope (STM).
3]	Transmission electron microscope (TEM),
4)	atomic force microscope (AFM).
*	NEMS (Nanoelectromechanical systems):-
	This approach employs both electrical of mechanical
	properties of nanostruxtures. The new generation
	of devices of systems based on this approach is
	Commonly referred to as nanoelectromechanical
	Systems (NEMS). This electromechanical Concept. may
	be used for the development of a new class of devices
	that includes nanomechanics, novel sensors, & a variety
	of mother new devices functioning on the
1	

LOCKUL Lock	N 1	OUCK
COLDI	/ ~ 1	/20 O G E

}		LOUGH TOUCH
<u> </u>		COLDER TORCE
		nanoscale
 -' } 		
-) -	*	Atoms & atomic Orbital:
-) 		one - electron atom:
-)		Consider the behaviour of electron in Hydrogen
- 5		atom. This e has lo move with a attractive potential
		field Called Coulombic potential energy,
		$V(i) = -e^2$
,		4TTEO2
		where, e = magnitude of electronic charge &
		En = permittivity of free space.
)		& force (f) = -dv.
)		dr.
) .		This potential function is spherically symmetric & leads
		to a 3-dimensional problem in Spherical Co-ordinates
_)		2,040.
_)		: Schnodinger's wave eqn to 3-dimensions will be
<u> -)</u>		$\nabla^2 \Psi(z,0,\phi) + 2m \left(E - V(z)\right) \Psi(z,\phi,\phi) = 0$
-)		1 <u>L</u> <u>0</u>
- ,)	,	The Solution to eq 1 Can be determined by the
-)		separation of Variables technique.
- 5		
J		where $\phi(0, \phi)$ is called angular probability density
-)		function, 5
)	e.	R(2)13 radial probability density function.
)	· · · · · · · · · · · · · · · · · · ·	Applying all boundary Conditions, the Solution
		of eq. (1) involves 3 quantum numbers Called
<u>ces</u>		principal quantum number, orbital quantum number,
3	·- -	& magnetic quantum number are denoted by
		n, l & m respectively.
	and the second s	

),

	The function ϕ (0, ϕ) dependens on n, 1, 8 m.
	whereas R(2) depends on principle quantum no.n.
	The I values Carry a special meaning. The first)
.f.	by 1 values are designated by 1st letter. They are
	termed as 5 (5 harp), P (principal), d (diffuse) &)
	f C fundamental).
	The radial probability density is defined as)
	the probability per unit radial distance. This
	behaviour implies that the probability of finding ;
	the et within a thin spherical shell close to
	the nucleus disappears for n=1 & n=0.
	The maximum probability of finding the et at a
	particular distracta from the much is
	2 = 90.
	which is called as Bohr radius.
	If the et is in 15 state, it spends most of the
	time at a distance a.
· .	Ψη,1,m (2,0,0) describes the wave function
	of et. The possible energies of et with quantum
	no. n is given by
-	1)
	$En = -me^4$ or
	$86^{\circ}h^2n^2$
	En = - 13.6 eV with me4 = 13.6 eV
	n^2 , $8\epsilon_0^2 h^2$
	we have, with n=1, energy E1 =-13.6ev.
	Called as ground state, E, = - 3.40 ev (n=2)
	Called as 1st excitation state.
	The ed can only be excited to the next
	energy level if it is supplied by right amount of
)

energy E2-E1. The max probability for n=2 is at a distance & = 400. This particular Concept explain the absorption Spectra which is direct Consequence of quantization energy. Since the principal quantum no determines the energy of ed of also position of ed Various Values of n Say 1, 2, 3 - are termed as K, L, M, N as shells of ets for a given n. 1 value gives to subshell. For e.g. 35,3p, 3d etc. The maximum radial probability distribution is, 2 max = n2 ao for l=n-1 with ao is Bobr radius.

For a Standard normal distribution, U=0 & 62=1. The last part of the eq above shows that any other normal distribution can be regarded as a standard norm distribution that has been Stretched horizontally by a factor of 6 4 then translated sightward by a distance A. Thus, 4 specifies the position of the bell's curve Central peak & of specifies the "width" of the bell Curve. The parameter 4 is at the Same time the mean, the median & the mode of the normal distribution. The parameter 52 is called the Variance; as for any random Variable, it describes how concentrated the distribution is around its mean. The square root of or is called the Standard deviation & is the width of the density function. Properties :-Function f(x) is symmetric around the point x=4, which is at the same time the mode, median & the mean of distribution. The inflection points of the curve occur one Standard deviation away from the mean (i.e. at x=4-5 & x=4+0) Poisson Distribution: The Poisson distribution is a discrete probability distribution that expresses the probability distribution of events occurring in a fixed period of time if these events occur with a known average rate & independently of the time since the last event If the expected number of occurrences in this interval is A, then the probability that there are

exactly K occurences (K being non-negative integer,

k=0,1,2...) is equal to

- >

æ.

 $\mathbf{r}_{\mathbf{u}}$

Hor

)

1 1

- -

)

)

FCK, N = \(\lambda \times \) \(\times \) \		. โดยเอริส สอบเลิ้	}
where, e is the base of natural logarithm. K is the no of occurrences of an event - the probability of which is given by the function. K! is the factorial of K. A is a tve real no., equal to the expected no. of occurrences that occur during the given internal. * Fermi-Dirac Statistics: consider the interaction for which no two electrons can be in the same quantum state. i.e. the system must essentially satisfy Pauli's Exclusion Principle. $f(E) = \frac{1}{1 + \exp\left(E - E_F\right)}$ where, EF is called the Fermi Energy. The f(E) is called Fermi-Dirac distribution or probability function & gives the probability that a quantum state at energy E will be occupied by an electron. let T = 0 k & Consider the Case when E The exponential term in the above eq? hecames, exp(E-EF/KT) \Rightarrow exp(-\omega) = 0 The resulting distribution function f(E) is, f(E \leftarrow E_F) = 1 1+0 Again let T = 0 k & Consider the case when E \leftarrow E_F The exponential term in the distribution function becomes, exp(E-EF/KT) \Rightarrow exp(+\omega) = +\omega) The resulting distribution function f(E) is,		$f(k, \lambda) = \lambda k e^{-\lambda}$)
K is the no. of OCCUTENCES of an event - the probability of which is given by the function. K is the factorial of K. A is a tve real no., equal to the expected no. of occurences that occur during the given internal. * Fermi-Dirac Statistics: Consider the interaction for which no two electrons Can be in the Same quantum state. i.e. the system must. Essentially Satisfy Pauli's Exclusion Principle. I + exp (E-EF) Whene, EF is called the Fermi Energy. The f(E) is called Fermi-Dirac distribution or probability function & gives the probability that a quantum state at energy E will be occupied by an electron. Let T = o'k & Consider the Case when EXEF. The exponential term in the above eq becomes, exp (E-EF/KT) => exp (-an) = 0 The resulting distribution function f(E) is, f(E < EF) = 1 1+0 Again let T = o'k & Consider the Case when E>EP. The exponential term in the distribution function becomes, exp (E-Ep/KT) => exp (+an) =+00 The resulting distribution function f(E) is,		KI)
K is the no. of OCCUTENCES of an event - the probability of which is given by the function. K is the factorial of K. A is a tve real no., equal to the expected no. of occurences that occur during the given internal. * Fermi-Dirac Statistics: Consider the interaction for which no two electrons Can be in the Same quantum state. i.e. the system must. Essentially Satisfy Pauli's Exclusion Principle. I + exp (E-EF) Whene, EF is called the Fermi Energy. The f(E) is called Fermi-Dirac distribution or probability function & gives the probability that a quantum state at energy E will be occupied by an electron. Let T = o'k & Consider the Case when EXEF. The exponential term in the above eq becomes, exp (E-EF/KT) => exp (-an) = 0 The resulting distribution function f(E) is, f(E < EF) = 1 1+0 Again let T = o'k & Consider the Case when E>EP. The exponential term in the distribution function becomes, exp (E-Ep/KT) => exp (+an) =+00 The resulting distribution function f(E) is,		where e is the base of natural lagorithm	·)
probability of which is given by the function. K is the factorial of K. A is a tve real no., equal to the expected no. of occurrences that occur during the given interval. ** Fermi - Dirac Statistics:- Consider the interaction for which no two electrons Can be in the same quantum state i.e. the system must essentially satisfy Pauli's Exclusion Principle.			<u> </u>
k is the factorial of k. A is a tre real no., equal to the expected no. of occurrences that occur during the given interval. * Fermi - Dirac Statistics: Consider the interaction for which no two electrons Can be in the same quantum state. i.e. the system must essentially satisfy Pauli's Exclusion Principle. I texp (E-EF) Where, EF is called the Fermi Energy. The f(F) is called fermi-Dirac distribution or probability function & gives the probability that a quantum state at energy E will be occupied by an electron. Let T = ok & Consider the Case when EXEP. The exponential term in the above eq becomes, exp (E-EF/KT) => exp (-00) = 0 The resulting distribution function f(E) is, f(EXEP) = 1 = 1 1to Again let T = ok & Consider the Case when EXEP. The exponential term in the distribution function becomes, exp (E-EF/KT) => exp (+00) =+00 The resulting distribution function f(E) is,			<u>/</u>
A is a tve real no., equal to the expected no. of occurrences that occur during the given interval. * Fermi-Dirac Statistics: (onsider the interaction for which no two electrons can be in the same quantum state i.e. the system must essentially satisfy Pauli's Exclusion Principle. f(E) = 1 1 + exp(E-EF) where, EF is called the Fermi Energy. The f(F) is called if Fermi-Dirac distribution or probability function f gives the probability that a quantum state at energy E will be occupied by an electron. Let T = ok f Consider the Case when E < Ep. The exponential term in the above eq becomes, exp(E-EF/KT) = exp(-\omega) = 0 The resulting distribution function f(E) is, f(E < Ep) = 1 Again let T = ok f Consider the Case when E > Ep. The exponential term in the distribution function becomes, exp(E-EF/KT) = exp(+\omega) = +\omega) The resulting distribution function f(E) is,			'
of occurrences that occur during the given interval. \\ * Fermi-Dirac Statistics: Consider the interaction for which no two electrons can be in the same quantum state i.e. the system must essentially satisfy Pauli's Exclusion Principle. $f(E) = \frac{1}{1 + \exp\left(E - EF\right)}$ where, EF is called the Fermi Energy. The $f(F)$ is called Fermi-Dirac distribution or probability function of gives the probability that a quantum state at energy E will be occupied by an electron. Let $T = \delta k$ G Consider the Case when $E < EF$. The exponential term in the above eq° becomes, exp($E - EF / KT$) $\Rightarrow \exp(-\infty) = 0$ The resulting distribution function $f(E)$ is, $f(E < EF) = \frac{1}{1 + 0}$ Again let $T = 0$ G G Consider the Case when G			` <u>'</u>
* Fermi-Dirac Statistics: Consider the interaction for which no two electrons Can be in the Same quantum state i.e. the system must essentially Satisfy Pauli's Exclusion Principle. $f(E) = \frac{1}{1 + \exp\left(E - EF\right)}$ where, EF is called the Fermi energy. The $f(F)$ is called Fermi-Dirac distribution or probability function f gives the probability that a quantum state at energy E will be occupied by an electron. Let $T = \delta k$ f Consider the Case when f		of occurences that occur during the given internal	
Consider the interaction for which no two electrons (an be in the Same quantum state i.e. the system must essentially satisfy. Pauli's Exclusion Principle. $f(E) = \frac{1}{1 + \exp\left(E - E_F\right)}$ where, E_F is called the Fermi Energy. The $f(E)$ is called fermi. Dirac distribution or probability function $f(E)$ gives the probability that a quantum state at energy E will be occupied by an electron. Let $T = OK$ & Consider the Case when $E(F_F)$. The exponential term in the above eq^D becomes, exp($E - E_F / K_T$) $\Rightarrow \exp\left(-\infty\right) = O$ The resulting distribution function $f(E)$ is, fixed the case when $E \neq F_F$. The exponential term in the distribution function becomes, exp($E - E_F / K_T$) $\Rightarrow \exp\left(+\infty\right) = +\infty$ The resulting distribution function $f(E)$ is,			}
Consider the interaction for which no two electrons (an be in the Same quantum state i.e. the system must essentially satisfy. Pauli's Exclusion Principle. $f(E) = \frac{1}{1 + \exp\left(E - E_F\right)}$ where, E_F is called the Fermi Energy. The $f(E)$ is called fermi. Dirac distribution or probability function $f(E)$ gives the probability that a quantum state at energy E will be occupied by an electron. Let $T = OK$ & Consider the Case when $E(F_F)$. The exponential term in the above eq^D becomes, exp($E - E_F / K_T$) $\Rightarrow \exp\left(-\infty\right) = O$ The resulting distribution function $f(E)$ is, fixed the case when $E \neq F_F$. The exponential term in the distribution function becomes, exp($E - E_F / K_T$) $\Rightarrow \exp\left(+\infty\right) = +\infty$ The resulting distribution function $f(E)$ is,	*	Fermi - Dirac Statistics:)—
Can be in the same quantum state. i.e. the system must essentially Satisfy. Pauli's Exclusion Principle. $f(E) = \frac{1}{1 + \exp(E - EF)}$ where, EF is called the Fermi energy. The $f(F)$ is called Fermi-Dirac distribution or probability function f gives the probability that a quantum state at energy E will be accupied by an electron. Let $T = 0$ k f Consider the Case when $F(EF)$. The exponential term in the above ef becomes, exp($F - EF / KT$) $\Rightarrow \exp(-\infty) = 0$ The resulting distribution function $f(E)$ is, ferefore, $f(E)$ is $f(E + EF)$ $f(E)$			
essentially satisfy fault's Exclusion Principle. $f(E) = \frac{1}{1 + \exp\left(E - E_F\right)}$ where, E_F is called the Fermi Energy. The $f(F)$ is called Fermi-Dirac distribution or probability function f gives the probability that a quantum state at energy E will be occupied by an electron. Let $T = 0$ k f Consider the Case when $E(E_F)$. The exponential term in the above eq' becomes, exp(F - E_F / KT) \Rightarrow $\exp(-\infty) = 0$ The resulting distribution function $f(F)$ is, $f(E \times F_F) = \frac{1}{1 + 0}$ Again let $T = 0$ k f Consider the Case when $E \times F_F$. The exponential term in the distribution function becomes, $f(F)$ is $f(F)$			
$f(E) = \frac{1}{1 + \exp\left(E - E_F\right)}$ $\text{where, } E_F \text{ is called the Fermi Energy. The } f(E) \text{ is called }$ $\text{Fermi-Dirac distribution or probability function } f \text{ gives the }$ $\text{probability that a quantum State at energy } E \text{ will be }$ $\text{occupied by an electron.}$ $\text{Let } T = \mathring{o} \text{ k. } f \text{ Consider the Case when } E \times E_F $ $\text{The exponential term in the above } eq^{\circ} \text{ becomes, }$ $\text{exp}(E - E_F / K_T) \Rightarrow \exp\left(-\infty\right) = 0$ $\text{The resulting distribution function } f(E) \text{ is, }$ $\text{f}(E \times E_F) = 1 = 1.$ $1+0$ $\text{Again let } T = 0 \text{ k. } f \text{ Consider the Case when } E \times E_F.$ $\text{The exponential term in the distribution function becomes, }$ $\text{exp}(E - E_F / K_T) \Rightarrow \exp\left(+\infty\right) = +\infty$ $\text{The resulting distribution function } f(E) \text{ is, }$		essentially Satisfy Pauli's Exclusion Principle.)
where, E_F is called the Fermi Energy. The $f(E)$ is called Fermi-Dirac distribution or probability function & gives the probability that a quantum state at energy E will be occupied by an electron. Let $T = 0$ k & Consider the Case when $E < E_F$: The exponential term in the above eq^n becomes, $exp(E - E_F / kT) \Rightarrow exp(-\infty) = 0$ The resulting distribution function $f(E)$ is, $f(E < E_F) = 1 = 1$ 1+0 Again let $T = 0$ k & Consider the Case when $E > E_F$. The exponential term in the distribution function becomes, $exp(E - E_F / kT) \Rightarrow exp(+\infty) = +\infty$ The resulting distribution function $f(E)$ is,		f(F) = 1 — (I))
where, E_F is called the Fermi Energy. The $f(E)$ is called Fermi-Dirac distribution or probability function & gives the probability that a quantum state at energy E will be occupied by an electron. Let $T = 0$ k & Consider the Case when $E < E_F$: The exponential term in the above eq? becomes, $exp(E - E_F / KT) \Rightarrow exp(-\infty) = 0$ The resulting distribution function $f(E)$ is, $f(E < E_F) = 1 = 1$ 1+0 Again let $T = 0$ k & Consider the Case when $E > E_F$. The exponential term in the distribution function becomes, $exp(E - E_F / KT) \Rightarrow exp(+\infty) = +\infty$ The resulting distribution function $f(E)$ is,		1 + exp(E-EF))
Fermi-Dirac distribution or probability function & gives the probability that a quantum state at energy E will be occupied by an electron. Let $T = 0$ k & Consider the Case when $E \langle E_F \rangle$. The exponential term in the above eqn becomes, exp($F - E_F / KT$) $\Rightarrow \exp(-\infty) = 0$ The resulting distribution function $f(E)$ is, f($E \langle E_F \rangle = 1 = 1$. 1+0 Again let $T = 0$ k & Consider the Case when $E \rangle E_F / E_F$. The exponential term in the distribution function becomes, exp($E - E_F / KT$) $\Rightarrow \exp(+\infty) = +\infty$ The resulting distribution function $f(E)$ is,		(KT))
Fermi-Dirac distribution or probability function & gives the probability that a quantum state at energy E will be occupied by an electron. Let $T = 0$ k & Consider the Case when $E \langle E_F \rangle$. The exponential term in the above eqn becomes, exp($F - E_F / KT$) $\Rightarrow \exp(-\infty) = 0$ The resulting distribution function $f(E)$ is, f($E \langle E_F \rangle = 1 = 1$. 1+0 Again let $T = 0$ k & Consider the Case when $E \rangle E_F / E_F$. The exponential term in the distribution function becomes, exp($E - E_F / KT$) $\Rightarrow \exp(+\infty) = +\infty$ The resulting distribution function $f(E)$ is,		where, EF is called the Fermi Energy. The f(F) is called	_)
probability that a quantum state at energy E will be occupied by an electron. Let $T = 0$ K & Consider the Case when $E \langle E_F \rangle$. The exponential term in the above eqn becomes, sexp($F - E_F / KT$) $\Rightarrow \exp(-\infty) = 0$ The resulting distribution function $f(E)$ is, for $f(E \vee E_F) = 1$ 1+0 Again let $T = 0$ K & Consider the Case when $E \vee E_F$. The exponential term in the distribution function becomes, sexp($E - E_F / KT$) $\Rightarrow \exp(+\infty) = +\infty$ The resulting distribution function $f(E)$ is,		Fermi-Dirac distribution or probability function & gives the	}
occupied by an electron. Let $T = 0$ k & Consider the Case when $E \langle E_F \rangle$. The exponential term in the above eq? becomes, $exp(E - EF / KT) \Rightarrow exp(-\infty) = 0$ The resulting distribution function $f(E)$ is, $f(E \langle E_F \rangle) = 1 = 1$. 1+0 Again let $T = 0$ k & Consider the Case when $E \rangle E_F$. The exponential term in the distribution function becomes, $exp(E - EF / kT) \Rightarrow exp(+\infty) = +\infty$ The resulting distribution function $f(E)$ is,		probability that a quantum State at energy E will be)
The exponential term in the above eq ⁿ becomes, $\exp(E - EF/KT) \Rightarrow \exp(-\infty) = 0$ The resulting distribution function $f(E)$ is, $f(E < EF) = 1 = 1$ 1+0 Again let $T = 0$ *k & Consider the Case when $E > EF$. The exponential term in the distribution function becomes, $\exp(E - EF/KT) \Rightarrow \exp(+\infty) = +\infty$ The resulting distribution function $f(E)$ is,		occupied by an electron.)
The resulting distribution function $f(E)$ is, $f(E < E_F) = 1 = 1.$ $1+0$ $f(E) = 0 < f(E) = 1.$ $f(E) = 1$	<u> </u>	Let T = OK & Consider the Case when EKER.)
The resulting distribution function $f(E)$ is, $f(E < EF) = 1 = 1.$ $1+0$ $fgain let T = 0* & Consider the case when E > EF. The exponential term in the distribution function becomes, exp(E - EF/kT) \Rightarrow exp(+\infty) = +\infty The resulting distribution function f(E) is,$)
f(E $\langle E_F \rangle$ = 1 = 1. 1+0 Again let $T = 0$ * & Consider the case when $E \rangle E_F$. The exponential term in the distribution function becomes, paragraph ($E - E_F / kT$) $\Rightarrow exp(+\infty) = +\infty$ The resulting distribution function $f(E)$ is,		$exp(F-EF/KT) \Rightarrow exp(-\infty) = 0$	1
Again let $T = 0^{\circ}k$ & Consider the Case when $E > E_F$. The exponential term in the distribution function becomes, perp $(E - E_F/kT) \Rightarrow \exp(+\infty) = +\infty$ The resulting distribution function $f(E)$ is,		The resulting distribution function f(E) is,	}
Again let $T = 0$ 'k & Consider the case when $E > E_F$. The exponential term in the distribution function becomes, $e^{\chi}p(E - E_F/kT) \Rightarrow e^{\chi}p(+\infty) = +\infty$ The resulting distribution function $f(E)$ is,		$f(E \langle E_F \rangle = 1 = 1.$)_
The exponential term in the distribution function becomes, $e^{\chi}p(E-Ep/kT) \Rightarrow e^{\chi}p(+\infty) = +\infty$ The resulting distribution function $f(E)$ is,		1to)
$\frac{\exp(E-Ep/kT) \Rightarrow \exp(+\infty) = +\infty}{\text{The resulting distribution function } f(E) \text{ is,}}$)—
$\frac{\exp(E-Ep/kT) \Rightarrow \exp(+\infty) = +\infty}{\text{The resulting distribution function } f(E) \text{ is,}}$		The exponential term in the distribution function becomes,	}—
	· · · · · · · · · · · · · · · · · · ·)—
f(E) = 1 = 0			,
$1 + \infty$	1	f(E>EF) = 1 = 0	ノ 一
		/ +∞ ∞	<i>)</i> 1

The Fermi-Dirac distribution function for T = ok is plotted in the following fig:f(E) Ef Fig: The Fermi probability fun f(E) V/5 energy for different temperatures (E). This plot shows that, for T = ok, the e s are in their lowest possible energy states. The probability of a quantum State being occupied is unity for EXEP & the probability of a state being occupied is zero E> Er. All ets have energies below the fermi energy at T = ok. Consider a certain amount of thermal energy (temp) increases above T = ok. e95 gain some amount of therma energy so that some ets can jump to higher energy levels, the distribution of ets among the available energy states will change. The change in the ed distribution among energy levels for Trok can be seen by plotting the Fermi-Dirac distribution function. If we let E = E & Trok, the eqn (I) becomes, fc= Ep) = 1 = . 1+exp(0) 1+1

()

)

)

1 1

particles are distinguishable, but (an occupy the same) available States i.e. it applies to quantum particles that do not obey the exclusion principle. e.g. Photons & phonons. The Bose-Einstein distribution is, f(E) = f(E, U, T) = 1 - 0		GOLDEN TOUCHS)}
For temperature above absolute zero, there is non-zero probability that some energy states above Ex will be occupied by electrons of some energy states below Ex will be empty. * Bose-Finstein Statistics: The Bose-Einstein distribution applies when the particles are distinguishable, but (an occupy the same available states i.e. it applies to quantum particles that do not obey the exclusion principle. Photons of phonons The Bose-Einstein distribution is, f(E) = f(E, U, T) = 1		The probability of State being occupied at F=F is.)
non-zero probability that some energy states above Ex will be occupied by electrons & some energy states below Ex will be empty. * Bose-Einstein Statistics: The Bose-Einstein distribution applies when the particles are distinguishable, but (an occupy the same available states i.e. it applies to quantum particles that do not obey the exclusion principle. Photons & phonons. The Bose-Einstein distribution is, f(E) = f(E, U, T) =		For temperature above absolute zero, there is	}
Ep will be occupied by electrons 4 some energy states below Ep will be empty. * Bose - Einstein Statistics: The Bose - Einstein distribution applies when the particles are distinguishable, but (an occupy the same available States i.e. it applies to quantum particles that do not obey the exclusion principle. e.g. Photons & phonons. The Bose - Einstein distribution is, f(E) = f(E, u, T) = 1 - 0 Photons & phonons. The large values of energy, all the above Ferminiac distribution are equal. This is because of the de-Broglie wavelength. As a lenergy increases, the de-Broglie wavelength decreases from a very high energies, the de-Broglie wavelength is vanishingly Small, such that the particle becomes like a classical particle. Osing Fermi-Dirac distribution, the probability of a level being occupied by an estimation of the probability of a level being occupied by a hole) is, 1 - f(E) = 2 Ep-E e RT +1)
below Ep will be empty. * Bose - Einstein Statistics: The Bose - Einstein distribution applies when the particles are distinguishable, but (an occupy the same available states i.e. it applies to quantum particles that do not obey the exclusion principle. e.g. Photons f phonons. The Bose - Einstein distribution is, f(E) = f(E, u, T) = 1 - 1 At the large values of energy, all the above Fermi- Dirac distribution f Bose - Einstein distribution are equal. This is because of the de-Broglie wavelength. As energy increases, the de-Broglie wavelength is vanishingly small, such that the particle becomes like a classical particle. Using Fermi-Dirac distribution, the probability of a level being occupied by an & is f(E), then the probability of a level being occupied by an & is f(E), then the probability of a level being occupied by a cocupied on & (i.e. being occupied by a hole) is, 1 - f(E) =			}
* Bose-Einstein Statistics: The Bose-Einstein distribution applies when the particles are distinguishable, but (an occupy the Same available States i.e. it applies to quantum particles that do not obey the exclusion principle. e.g. Photons & phonons. The Bose-Einstein distribution is, f(E) = f(E, u, T) = 1 At the large values of energy, all the above Fermi-Dirac distribution of Bose-Einstein distribution are equal. This is because of the de-Broglie wavelength. As energy in creases, the de-Broglie wavelength is vanishingly Small, such that the particle becomes like a classical particle. Using Fermi-Dirac distribution, the probability of a level being occupied by an & f(E), then the probability of a level not being occupied on e (i.e. being occupied by a hole) is, 1 - f(E) =)
The Bose-Einstein distribution applies when the particles are distinguishable, but can occupy the same available states i.e. it applies to quantum particles that do not obey the exclusion principle. e.g. Photons of phonons. The Bose-Einstein distribution is, f(E) = f(E, u, T) = 1			<u></u>
The Bose-Einstein distribution applies when the particles are distinguishable, but (an occupy the same available states i.e. it applies to quantum particles that do not obey the exclusion principle. e.g. Photons of phonons. The Bose-Einstein distribution is, f(E) = f(E, U, T) = 1 - 0 Photons of energy, all the above Ferminal extra the large values of energy, all the above Ferminal Dirac distribution of Bose - Einstein distribution are equal. This is because of the de-Broglie wavelength. As energy increases, the de-Broglie wavelength decreases of for avery high energies, the de-Broglie wavelength is vanishingly small, such that the particle becomes like a classical particle. Using Fermi-Dirac distribution, the probability of a level being occupied by an energies occupied an energy increased by a hole) is, I - f(E) = 2 EF-E e KT + 1	*	Bose-Einstein Statistics:)
particles are distinguishable, but (an occupy the Same available States i.e. it applies to quantum particles that do not obey the exclusion principle. Photons of phonons. The Bose-Einstein distribution is, f(E) = f(E,U,T) = 1 - 0 e kT - 1 At the large values of energy, all the above Ferminina distribution are equal. This is because of the de-Broglie wavelength. As energy increases, the de-Broglie wavelength decreases of for avery high energies, the de-Broglie wavelength is vanishingly small, such that the particle becomes like a classical particle. Using Fermi-Dirac distribution, the probability of a level being occupied by an edis f(E), then the probability of a level not being occupied an ed (iver being occupied by a hole) is, 1-f(E) = EE-E e kT + 1			
available States i.e. it applies to quantum particles that do not about the exclusion principle. Photons of phonons. The Bose-Einstein distribution is, f(E) = f(E, U, T) =		position and distinguish the but so were	`}—
that do not obey the exclusion principle. Photons of phonons. The Bose-Einstein distribution is, f(E) = f(E,U,T) = 1 - 0 Pt the large values of energy, all the above Fermi- Dirac distribution of Bose - Einstein distribution are equal. This is because of the de-Broglie wavelength. As energy increases, the de-Broglie wavelength decreases of for avery high energies, the de-Broglie wavelength is vanishingly Small, such that the particle becomes like Using Fermi-Dirac distribution, the probability of a level being occupied by an elis f(E), then the probability of a level not being occupied an elice, being Occupied by a hole) is, 1 - f(E) = 2 EF-E e RT +1		available States i.e it applies to avactum passicles	
e.g. Photons 4 phonons. The Bose-Einstein distribution is, f(E) = f(E, U, T) = 1		that do not obey the exclusion principle.	
The Bose-Einstein distribution 15, $f(E) = f(E, u, T) = -0$ e E-4 e KT - 1 At the large values of energy, all the above Fermi- Dirac distribution of Bose - Einstein distribution are equal. This is because of the de-Broglie wavelength. As energy increases, the de-Broglie wavelength decreases of for avery high energies, the de-Broglie wavelength is Vanishingly Small, such that the particle becomes like a classical particle. Using Fermi-Dirac distribution, the probability of a level being occupied by an e is f(E), then the probability of a level not being occupied an e (i.e. being) Occupied by a hole) is, 1 - f(E) = e KT + 1 since, 3 3 3 1 2 3 3 3 3 4 3 4 4 4 4 4 5 5 5 6 6 7 6 7 7 8 8 8 8 8 8 8 8 8 8 8	e.g.	Photons & phonons.	
f(E) = +(E, u, T) =		The Bose-Einstein distribution 15,	
e kT - 1 At the large values of energy, all the above Fermi- Dirac distribution of Bose - Finstein distribution are equal. This is because of the de-Broglie wavelength. As energy increases, the de-Broglie wavelength decreases of for avery high energies, the de-Broglie wavelength is vanishingly Small, such that the particle becomes like a classical particle. Using Fermi-Dirac distribution, the probability of a level being occupied by an eois occupied an eo (i.e. being) occupied by a hole) is, l-f(E) - O EF-E e T 1 since,		f(E) = f(E, u, T) = 0	
Dirac distribution of Bose - Einstein distribution are equal. This is because of the de-Broglie wavelength. As energy increases, the de-Broglie wavelength decreases of for avery high energies, the de-Broglie wavelength is vanishingly Small, such that the particle becomes like a classical particle. Using Fermi-Dirac distribution, the probability of a level being occupied by an eois occupied an eo (i.e. being occupied by a hole) is, 1-f(E) =	·	e kt 1	
equal. This is because of the de-Broglie wavelength. As energy increases, the de-Broglie wavelength decreases f for avery high energies, the de-Broglie wavelength is Vanishingly Small, Such that the particle becomes like a classical particle: Using Fermi-Dirac distribution, the probability of a level being occupied by an eis fce), then the probability of a level not being occupied an eise (i.e. being occupied by a hole) is, 1-fce) = EF-E EF-E ERT +1		the large values of energy, all the above termi-	<i>}</i>
energy increases, the de-Broglie wavelength decreases f for avery high energies, the de-Broglie wavelength is Vanishingly Small, such that the particle becomes like a classical particle. Using Fermi-Dirac distribution, the probability of a level being occupied by an elist f(E), then the probability of a level not being occupied on elice being Occupied by a hole) is, 1-f(E) =			<i>y</i>
for avery high energies, the de-Broglie wavelength is Vanishingly Small, such that the particle becomes like a classical particle. Using Fermi-Dirac distribution, the probability of a level being occupied by an eight fifty of a level not being occupied an eight (i.e. being occupied by a hole) is, 1-f(E) =		· · · · · · · · · · · · · · · · · · ·) —
Vanishingly Small, such that the particle becomes like a classical particle. Using Fermi-Dirac distribution, the probability of a level being occupied by an edis f(E), then the probability of a level not being occupied on ed (i.e. being occupied by a hole) is, 1-f(E) =			<u>}</u>
a classical particle. Using Fermi-Dirac distribution, the probability of a level being occupied by an edis fcf), then the probability of a level not being occupied an ed (i.e. being occupied by a hole) is, 1-fcf) =			<u>)</u>
Using Fermi-Dirac distribution, the probability of a period being occupied by an edistic, then the probability of a level not being occupied on ed (i.e. being occupied by a hole) is, 1-f(E) =	• *************************************		1
level being occupied by an edis fcf), then the probability of a level not being occupied on ed (i.e. being) Occupied by a hole) is, $1-f(E) = $)
of a level not being occupied an et (i.e. being) Occupied by a hole) is, I-f(E) =			<u>} ·</u>
Occupied by a hole) is, 1-f(E) =			<u>}</u>
$\frac{1-f(E)}{E_{F}-E}$ $=\frac{1}{since}, \qquad \frac{1}{since}$	·· -	\mathbf{c}	
$\frac{E_{F}-E}{e^{-E}}$ e^{-E} e^{-E} e^{-E})—
since, _ = 1) —
since, _ = 1	<u> </u>	e RT +1) -
$\frac{E-E_F}{e^{KT}+1} = \frac{1}{e^{KT}+1}$)
$e^{KT}+1$ $e^{KT}+1$		E-EF E)
	;	$e^{KT}+1$ $e^{KT}+1$)
) -

	\alpha of the topic of the topi
*	Maxwell - Boltzmann Statistics:
7	In Statistical mechanics, Maxwell-Boltzmann
	statistics describes the statistical distribution of material
	particles over various energy states in thermal equillibric
	-m. When the temperature is high enough of devoity is
	low enough to render quantum effects negligible.
	The expected number of particles with energy Ei for
	Maxwell-Boltzmann Statistics is Ni where, - Ei/L-
constant sum la dese	Maxwell-Boltzmann Statistics is Ni where, Ni = N gi = N gie = N gie Z
	where, Ni = no. of particles in state i
and the state of t	
	Ei = energy of the l-th state. gi = the degeneracy of energy level i the no.
	gi = the degeneracy of energy level i, the no. Of particles States (excluding the "free
	particle" State), with energy €i
	4 = chemical potential.
	K = Boltzmann's Constant.
: :	T = absolute temp.
:	N = total no of particles = N = \(\frac{2}{5}\) Ni
<u> </u>	Z = Partition function = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Equivalently, the distribution is sometimes expressed as,
:	Ni = e EL/KT
· · · · · · · · · · · · · · · · · · ·	$\frac{Ni}{N} = \frac{e^{-\epsilon i/kT}}{\exp(\frac{\epsilon_i - \mu}{kT})} = \frac{e^{-\epsilon i/kT}}{z}$
-	
•	where, index i refers a particular state rather than
	Set of all States with energy Ej.
	Fermi-Dirac & Bose-Einstein Statistics apply when
: 	

)

)

)

)

)

	SGOLDEN FOUCH!) L
	quantum effects are important of the particles are)
	"indistinguishable". Quantum effects appear if the)
	Concentration of particles (NV) > nq. where Nq is the)
	quantum concentration, for which me the interparticle	1)
	distance is equal to the thermal de Broglie wavelength	†
	So that the wavefunctions of the particles are touching.	
	but not overlapping. Fermi-Dirac statistics applies to	ļ.,
·	fermions (particles that obey Pauli Exclusion principle)]
	& Bose-Einstein Statistics apply to bosons. As the	T ,
· · · · · · · · · · · · · · · · · · ·	quantum concentration depends on temperature,)-
	most systems at high temperature obey the classical)
	(Maxwell-Boltzmann) limit unless they have a very	,
	high density.	,
	Both Fermi-Dirac & Bose-Finstein become	-)-
	Maxwell-Boltzmann Statistics at high temperature)
	or at low temperature. Concentration.	
)
)
		.)
),
· · · · · · · · · · · · · · · · · · ·)
		.)
)_
<u> </u>		_)
)_
		<u> </u>
1)

)		Collections
)	*	Time & length Scales of the Cosin Solids:
- }	I	
١ ﴿		et fundamental length in solids:
17		Consider an et as almost free particle by
L)		assigning to the ed an effective mass that may
}-		differ from the mass of e in Vacuum.
-)		The fundamentally important length is de Broglie
)		wavelength of e in a solid. For a free particle this
		length is given by,
).		$\lambda = 2TT \hbar$
		P
		For an ed in a semiconductor nanostructure with the
		effective mass m*, the de Broglie wavelength & is typically
\ \frac{-\lambda}{\gamma}		greater than that of free el 20.
		$\lambda = 2\pi h = 2\pi h = \lambda_0 / m_0$
		$p \sim \sqrt{2m*E} \sim \sqrt{m*}$
		where, $\lambda_0 = 217 \text{t}$.
- <i>)</i>		where E = 0 and - 8 m = - 1 l l l
- 5		where E = e energy of mo = mass of the e in Vacuum
- }-	2]	Size of a device & poor
· ,	4 s.e. \$ \frac{1}{2}	Size of a device & e ^o spectrum quantization: Let a geometrical size of a semiconductor sample,
	,	Lx X Ly X Lz & assume that Lz < Ly < Lx
)		Since only an integer number of half wave
) 	<u>.</u>	of the ells can fit into any finite System,
)	N. Comments	instead of Continuous energy spectrum,
,)		Lx : & a continuous number of the els states,
		we obtain a set of discrete et states
-)		4 energy levels, each of which is
		Ly characterized by the Corresponding
)		
)		

	number of half-wavelengths. This is referred to)
	as quantization of et motion.)
	e⊖s in solid-state devices are subjected to	
	Scattering by Crystal imperfections, impurities, lattice)
	Vibrations, interface roughness, etc. These Scattering	
	processes are divided into two groups:	(
	elastic & inelastic.	
	In classical physics, an elastic collision leads to	
	a change only in the particle momentum. I does not	
	destroy the phase of e. After an elastic collision,	, - ,-
	the energy remains unchanged of the et wavefunction	
	4 (2, t) Consists of different Components.))
	In an inelastic collision, both the momentum & the)
	energy Change. Inelastic scattering produces equaves)
	with different energies of the resulting wavefunction)
	has a Complex dependence on both position & time.)
	the beating of different wave Components in time)
	washes out the Coherence effects.)
)
3]	classification of transport regime:)
	Quantum Regime -> Intercontact distance, Ly is)
· · ·	Comparable to the e wavelength	
	Le < 2.	
· -	Mesoscopic regime -> Interconlact tength distance is	· •
	less than the dephasing length,	
	Lz < Lø.	
	classical regime -> Intercontact distance exceeds	, -
State of Section 1	Cone, two 4 3 - dimensional the despotasing length,	,
	etransport) Lx>10	1
	classical ballistic regime, le> Los)
		+
		1

; 		CCCCON MATCHE
,		resp: 150 CE
)		Quasiballistic regime (energy-Conserving):
_)		LE > Lx > Le, Lo
, _ ;		Transverse size effects:
2).	1.	effect related to the mean free path,
- }-		Lz, Ly ∼le
		diffusion effects, Lz, Ly ~ Lr
- 7-	-	V
-	1]	Time Scales:-
		There are two fundamental times defining the
		Character of e - transport behavior:
	[i	the time between two successive Scattering events, or the
<u> </u>		·Scattering time, Te;
<u>عد)</u>	11)	the time which characterizes the duration of Scattering
3	1	event ts.
)		Under ordinary Conditions, Te>> Ts.
		It is usually assumed that the scattering event is
		instantaneous i.e., T5 >0.
)		In classical regimes, the characteristic times f
- ' j	, , , , , , , , , , , , , , , , , , ,	their relationships to the device sizes determine temporal
-)	6	& frequency regimes of device operation.
- >	£,g.	the transition time the = Lx/v determines the duration
-,)	X	of signal propagation through a device. 10 is the edvelocity.
-)		the defines speed limit of device. The device cannot
<u> </u>	l ·	effectively operate in the time range less than the
)		In quantum mechanics, if external potentials are
		time-independent, the e ⁶ 5 are in Stationary States.
)		the temporal evolution of a stationary state is always determined by an exponential factor exp [-i(E/t)+7]
)	į	determined by an exponential factor exp [-i(E/ti)t].
9 (
1		

	If the alternating external field of an angular
	frequency w is applied to the stationary e System the
	response of the et system may be referred to one of
<u> </u>	the following 3 different regimes depending on the freque
	of the external field.
·······································	Ultra-high (quantum) frequencies:-
	If the is Comparable to the Stationary e energy
	State E, the nature of the et's response will be
	quantum-mechanical. Only transitions between States with
	the energy difference SE = two are allowed. If Eis
<u> </u>	quantized, the interaction is possible only at resonance.
	frequencies. By Varying device size, one Can Vary the
	energy spectrum & as a result, change the frequency
	properties over a wide range.
	If tw<< E, the e ⁶ 's response to an alternating
	field is classical. In the classical picture, the external
	alternating field will cause periodic e acceleration &
	deceleration. Scattering interrupts these accelers & decelerations.
)
2)	High (classical) frequencies:
1,-	If wte >> 1, the e motion during one period is
	not interrupted by Scattering. In accordance with classical
	mechanics, the es momentum oscillates with a phase
	opposite to that of field.
7.0)
3)	Low frequencies:
	If wte <<1, the equindergoes many scattering,
	events during one period of the external field.
· · · · · · · · · · · · · · · · · · ·	Multiple Scattering during the period brings the
	e into quasi-stationary state which follows the
	1
<u> </u>	

CONTROL TENERS

CONTROL

CONTR

oscillations of the external field. The et momentum oscillates in phase with the field.

Density of States of electrons:

The density of states of a System describes the number of states at each energy level that are available to be occupied. A high density of states at a specific energy level means that there are many states available for occupation. A density of states of zero means that no states can be occupied at that energy level.

In quantum mechanical systems, not all waves, or wave-like particles, are allowed to exist. In Some systems, the interatomic spacing of the atomic charge of the material allows only e. of certain wavelengths to exist. In other systems, the crystalline structure of the material allows waves to propagate in one direction, while suppressing wave propagation in another direction. Waves in quantum mechanical system have specific wavelengths occupies a different mode or state. Because many of these states have the same wavelength of therefore share the same energy, there may be many states available at certain energy levels.

e.g. The density of states of e⁰5 in semiconductor:

For e⁰5 at the Conduction band edge, Very few

States are available for the et to occupy. As the et increases in energy, the et density of states increases of more states become available for occupation. However, because there are no states, available for ets to occupy

-)--)-

n -)-

b) e) e)

) i hs

-) -) **J**

<u>)</u>

	SHOUGH FOREMS
within the bandgap, ets at th	e Conduction band edge
must lose at least Eg of enem	
transit to another available	State.
* Electron transport in Meto	ds '-
In metals, the bands	
are only partially filled. Thus	•
States are Intermixed within.	
eos can move freely under the	
field. metals have a high ele	
v v	√
C.B. Partially filled	C.B.
V.B. filled	Overlap
	Overlap V·B·
fig:- Typical band structo	
* Electron transport in Semicondu	ctors:
We can observe that, for	
acceleration in an applied electri	·
able to move into new energy st	9
must be energy states (allowed	
not occupied by e 5) available -	
The Si band Structure is	
band is completely filled with e	·
band is empty. Then there can be	· · · · · · · · · · · · · · · · · · ·
within the Valence band, since	· ·
available into which e 5 can n	•
ees in the Conduction band, so r	
take place there either. The Si	has high resistivity
typical of insulators.	the state of the s
	•

^ j		
		GOURTH TOUCK
		Empty C.B.
-)		Eg
-)-;-	,	
- }		filled V.B.
		figi- Typical band structure at 0°k.
)	*	Semiconductors at ook have basically the same
-)		structure as insulators. A filled V.B. Separated from
-	÷.	an empty C.B. Containing no allowed energy states. The
		difference lies in the size of band gap Eg, which is much
	C -	Smaller in Semiconductors than in insulators.
1)	٠,٩٠	The Semiconductor Si has a band gap of about 1.1eV
)		Compared with 5 eV for diamond. The relatively Small band
)		gaps of semiconductors allow for excitation of es from
)		the lower band (V.B.) to upper band (C.B.) by reasonably amount of thermal or optical energy.
)		At room temp, a semiconductor with 1eV band
)	:	gap will have significant no of eos excited thermally
_)		across the energy gap into the CB. whereas an insulator
-)	!	with hand gap = loeV will have negligible no. of such
ر مے		excitations. Thus an important difference bet? Semiconductor
- ',		& insulators is that the no. of ets available for conduction
-	<u> </u>	Can be increased greatly in semiconductors by thermal or
20)		optical energy.
	<u>.</u> . *	Empty
)	<u>.</u>	Empty C.B.
2		
)		; Eg
)	· · · ·	
-)		Jan Filled Maria V.B.
)		Insulators
_ /		

Cho I	E: Essential Electromagnetics for Nanotechnology
*	Lorentz force-motion equation of charged particle
	in EM fields:
	The current is the rate of flow of charge
	through the cross-section of a Conductor.
	An electric Current in a Conductor is due to moving.
	charges, which move with some drift velocity. Generally,
	we consider the aments flowing in thin wires, but
	they may flow in large sheets or Conductors of large
	Volume. Thus total Current is given by the rate of
	passage of charge across a specified area.
	But at different points of big Conductors of
	inregular shapes 'Local currents' may not be the same.
	In Such situations, the concept of Current density
·	J' 15 used.
	J 15 the quantity of charge passing through
<u> </u>	per unit area & per unit time through an element
	of surface d5 at right angles to the flow.
	5
, , , , , , , , , , , , , , , , , , ,	\rightarrow \uparrow \uparrow \downarrow
	\rightarrow \rightarrow \rightarrow
	The Current density 3 (2) at any point is in the
	direction in which a tre charge moves at that point.
	J'is assumed to be due to the motion of the charges.
	But if -ve charges are moving then I will be in the
	direction opposite to the actual Charge motion.
ļ	The Current I is the flux of I over the
·	surface 5, the cross-sectional area of the conductor
	i.e. $I = \int \overrightarrow{J} \cdot d\overrightarrow{S}$ — \overrightarrow{D}
	5
i	!

,)

However if the charged particle is moving in both electric & magnetic fields, in addition to the above magnetic force, it will also experience an electric force q E. In such cases, the total force acting on the charged particle will be,

 $\overrightarrow{F} = q\overrightarrow{E} + q(\overrightarrow{\nabla} \times \overrightarrow{B})$ $\overrightarrow{F} = q[\overrightarrow{E} + (\overrightarrow{\nabla} \times \overrightarrow{B})] - q$

Hall effect: - If a magnetic field is applied perpendicular to the direction of current, a voltage is developed across the conductor at right angles to the both the direction of current flow & that of magnetic field.

This voltage is known as Hall voltage 4 phenomenon is called as Hall effect.

If a magnetic field is applied perpendicular the direction in which holes drift in a P-type bar.

The path of the holes tends to be deflected towards the bottom surface of the Specimen. I will accumulate there.

Using vector notation, the total force on a single hole due to the electric & magnetic field is $F_{x} = 9 (E_{x} + V_{x}B_{z})$ In the y-dir the force is, $F_y = q (E_y - V_x B_z)$ — From eqn 2, unless an electric field Ey is established along the width of the bar, each hole will experience a net force in the y-dir, due to the q Vx Bz product. .: To maintain a steady state flow of holes down the length of the bar, the electric field Ey must just balance the product . Vx Bz. $E_{y} = V_{x} B_{z} - 3$ so that the net force Fy is zero. Physically this electric field is set up when the magnetic field shifts the hole distribution slightly in the y-dir. once the electric field Ey becomes as large as VxBz, no net lateral force is experienced by the holes as they drift along the bar. The establishment of the electric field by is known as Hall effect. I the resulting Voltage VAB = EyW is called the Hall voltage. If we use the expression derived in eq 2 for the drift velocity (using tq & po for holes), the field Ey becomes, Jx = apo Vx from eqn (3) Ey = VaBa Ey = Joe By Ey = RH Jx Bz where, RH =

	/doeden tonesi	
	Thus the Hall effect is proportional to the product)
	of the current density & the magnetic flux density.	1)
	The proportionality constant	3)
	RH = 1 is called Hall Coefficient.	
	9Po).
	A measurement of the Hall Voltage for a known	<u>.) </u>
	Current & magnetic field yields a Value of the hole)_
	Concentration p.,	
	P = 1	
	9RH	
	$=$ $J_{x} B_{z}$	
	Q Ey	ļ ,
	= (Ix/Wt) Bz	
	9 (VAB/W))
)
	$E_{y} = I_{x}B_{z} \qquad \qquad \boxed{5} V_{AB} = I_{x}B_{z}$	7
	9+VAB 9+Ey)
	since all the quantities in the RHS of eq 15 can be)
	measured. The Hall effect can be used to give quite)
	accurate Value for carrier concentration.)
		(<u> </u>
<u>-</u>	Applications of Hall effect:	
	To Calculate the carrier Concentration in a given)
	Conductor. (no, po).)
2]	To find out the type of Semiconductor (p-type or	
-	n-type).	<u> </u>
		`)—
		- _)-
- <u>- 1</u>		— <u>;</u> —

•	t in		ł	ı	1	í	1	i	١,	4
	Delt.									
13	6011	i.	i	ř	}	ı	i	11	1.1	j

,)		Dale
	*	Maxwell's Equations:-
<u>y</u> ,	1]	Maxwell's Equations in Differential Form:
J -)	7	In 1873, Prof. Jems Maxwell, England assembles
<u>ا</u> ا	 	the Ampere, Faraday, & Gauss's laws into a set of
<u> </u>		4 equations Called Maxwell's equations.
 - 	-	Maxwell egns are the 4 fundamental egns of
		electromagnetism & are differential forms of the laws of
		electricity & magnetism.
1	مآ	
)		For the electric field of charge yields,
· · · · · · ·		$\nabla \cdot \vec{D} = \emptyset$
-		where, D = electric displacement in C/m2.
		3 = free charge density in C/m3.
·)	12	
)	6]	Gauss's law for magnetic field yields,
)		∇·B = 0
)		where $B = magnetic induction in \omega b/m^2.$
-)	;	This is Gauss's law of magnetic induction.
- <u>}</u>	٦٦	
-)-	<u>C</u>]	Ampere's law in circuital form for the magnetic field
-		accompanying a Current when modified by maxwell
- 7		$\frac{\nabla \times H}{\nabla \times H} = \frac{1}{2} + \frac{1}{2} \frac{1}{2}$
3		ət .
.)		where, H = magnetic field intensity in A/m
)	Na .	4 J = Current density in A/m2.
		-) 0 = wasul (distry 10 11/11).
	d]	faraday's law in circuital form for the electromotive
		force produced by the rate of change of magnetic flux
)		linked with the path yields,
)		
)		

•		ļ ,
	$\nabla \times \overline{E} = -\partial \overline{B}$	ì
	∂ t ,	
	where, E = electric field intensity in V/m.	}
	Thus, Maxwell's 4 fundamental egns in differential)
	form are -))
	V.D = 9 - Gayss's law in electrostatics.	,
	V.B = 0 - Gauss's law in magnetostatics.)
	DXE = - 28 — Differential form of Faraday's law.	<u>)</u>
	$\nabla XH = \overline{J} + \partial \overline{D}$ — Modified Ampere's law.	<u> </u>
		—
2]	Maxwell's egns in Integral Form:	一
م)	We know that the 1st Maxwell's eqn in differential	- }-
	form is	- <i>></i> -
<u> </u>	$\nabla \cdot \overline{D} = \emptyset$	一
	Integrating this equ over a volume V we get,	7
	$\int \overline{\nabla} \cdot \overline{D} \cdot dV = \int g dV - \overline{D}$)
	V	ڒؚ
	But $\int g dv = Q$,
	V)
	Applying Gauss's divergence theorem to the "L.H.S)
<u> </u>	of eq o () to convert volume integral into the surface	ì
	integral.)
	$ \overline{D} \cdot d\overline{S} = \int \overline{\nabla} \cdot \overline{D} dV $	()
		<u> </u>
	eq ① becomes,	_)_
- 1	$\int \overline{D} \cdot d\overline{s} = Q - Q$)
<u> </u>	5	
	where, & = net Charge Contained within Volume V.	_ ,-
		. '

4. 5 = Surface bounding volume V. "The outward flux of the electric displacement D through any closed surface 's' is equal to 1 the net charge within the volume." This is Gauss's law in electrostatics. The 2nd maxwell's eqn in differential form is, V.B = 0 Integrating this equ over a volume V we get, V.B dv =0 Using Gauss's divergence thm we have, $\nabla \cdot \overline{B} \, dV = \int \overline{B} \cdot d\overline{3}$) : (B.d5 = 0) Thus, the outward flux of magnetic induction B through any closed Surface 5 is equal to zero. The physical meaning of the statement V.B = 0 is that the magnetic field lines do not diverge out from a point. Instead they close back on themselves. In other words," there are no free sources of B." The Statement div. B = 0 (V.B = 0) thus directly leads to the conclusion that the magnetic monopoles do not exist. c) The 3rd Maxwell's eq in differential form is, $\nabla X \overline{E} = -\partial \overline{B}$

	The second secon	
	Integrating this eqn over a surface S, bounded by a	
	Curve C we get,)
		*
	$\int_{S} (\overrightarrow{\nabla} \times \overrightarrow{E}) \cdot d\overrightarrow{S} = -\int_{S} \frac{\partial \overrightarrow{B}}{\partial t} \cdot d\overrightarrow{S}$	
·	Converting the surface integral to the LiH.S. into line)
	integral by Stoke's 1hm, we get,	,
	6 E.dI = -2 [B.d5] @)
	$ \oint \vec{E} \cdot d\vec{L} = -\frac{\partial}{\partial t} \left[\int \vec{B} \cdot d\vec{S} \right] - G $	
	Thus, the ent Induced in any Conductor is proportional	
	to the rate of change of magnetic flux associated	
i	with the Conductor.	\mathbb{L}
d]	The 4th Maxwell's eqn is;	
:	$\overrightarrow{\Delta} \times \overrightarrow{H} = \overrightarrow{J} + 9\overline{D}$	1
	. 01.	
	Integrating this eqn over a surface 5, bounded by	十二
, !	Curve C, we get,)
i.	$(\overrightarrow{\nabla} \times \overrightarrow{H}) \cdot d\overrightarrow{S} = ((\overrightarrow{T} + \partial \overrightarrow{D}) \cdot d\overrightarrow{S})$	
	$\int (\overrightarrow{\nabla} \times \overrightarrow{H}) \cdot d\overrightarrow{S} = \int (\overrightarrow{J} + \partial \overrightarrow{D}) \cdot d\overrightarrow{S}$	1
	Using Stoke's thm on L.H.s., we get,	1 7
	$\int (\overrightarrow{\nabla} \times \overrightarrow{H}) \cdot d\overrightarrow{S} = \oint \overrightarrow{H} \cdot d\overrightarrow{I}$	1.)
	5	1
	$\therefore \oint \overrightarrow{H} d\overrightarrow{x} = \int (\overrightarrow{J} + \partial \overrightarrow{D}) \cdot d\overrightarrow{S}$	
	3 at	1
	The magnetomotive force around a closed path is equal	<u> </u>
	to the Conduction current plus the time derivative of	
	the electric displacement through any Surface bounded	
	by the path.	† ·
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
;		1
:		† >
		1:

Equation of Continuity Consider a Conducting region bounded by a closed surface S as shown in the fig. Let us assume that the Volume charge density in the region is g. let I be the flux of the Current density Vector leaving the surface. The total Current I Crossing the surface S in the outward direction is given as J.d5 If the Current density Vector I remains unchanged, with time everywhere, the current is said to be Stationary or Steady. Let us consider an infinitesimal Small element dv of the region. The charge enclosed by the volume element is da = gdv The total charge q inside volume V bounded by the Surface S is, 134V Since, Current is simply a flow of charge per unit time, an outward flow of charge from the region will decrease the charge Concentration in the bounded region. Thus, from law of conservation of charge, "The rate of charge leaving the Volume

through bounding surface must be equal to rate of

decrease of charge inside it."

-)-,-

)

)

)

- 75°


```
E & H are in phase, but perpendicular to each other.
           Maxwell's 3rd & 4th relations are:-
                      \nabla XH = J. + \partial D = \partial D
                                                                      since J =0.
   Taking Scalar product on both sides of above egns
  with H & E respectively & subtracting we get,
           E \cdot (\nabla X \overline{H}) - \overline{H} \cdot (\nabla X \overline{E}) = \overline{E} \cdot \partial \overline{D} + \overline{H} \partial \overline{B}
    By using vector identity
            \nabla \cdot (\overline{A} \times \overline{B}) = \overline{B} \cdot (\overline{\nabla} \times \overline{A}) - \overline{A} \cdot (\overline{\nabla} \times \overline{B})
       \overline{\nabla} \cdot (\overline{E} \times \overline{H}) = \overline{H} \cdot (\overline{\nabla} \times \overline{E}) - \overline{E} \cdot (\overline{\nabla} \times \overline{H})
                                     E. (TXH) - H. (DXE)
                          = -\int \overline{E} \cdot \partial \overline{D} + \overline{H} \cdot \partial \overline{B}
\partial t \qquad \partial t
       Using D = GOE & B = MOH Above egn becomes,
                                  + Ho 2 H2 ]

2t 2t 2t
     V. (EXH) =
                                    2 ( EOE2 + MOH2)
                                   1 EOE2 + 1 MOH2
  V. (EXH) = -0
      Integrating over a volume V bounded by surface s
I using divergence them we get,
                (\overline{E} \times \overline{H}) \cdot d\overline{S} = -\partial \left( \frac{G_0 E^2 + M_0 H^2}{2} \right)
         The quantity on LHS is denoted by P
```

P = EXH watts/m2. I is called the Poynting Vector. It represents the amount of field energy passing through unit area of surface in unit time normal to the direction of flow of energy. $\int \overline{P} \cdot d\overline{s} = -\partial \left(\frac{E_0 E^2 + \mu_0 H^2}{2} \right) dV$ The integral on the RHS is the sum of electric & magnetic energies. Electrostatic field energy per unit volume = 1 €0E2 Magnetostatic field energy per unit volume = 1 MoH2 for free space. RHS is thus the energy lost per unit time by the volum V & LHS must be total outward flux of energy through the Surface 5 bounding Volume V. 50 that (EXH) has dimensions of energy / (area X time) while the term - dw is the rate at which energy i decreasing within Volume where, $W = \int \left(\frac{E_0 E^2}{3} + \frac{40H^2}{3} \right) dV$ I is called the total energy (Em energy) in a given Volume in free Space. For any arbitrary closed surface, the amount of power flowing out through Surface is $\oint \overline{P} \cdot d\overline{S} = -dW$

..... \

	Paynting theorem: - It states that, Decrease of electrom-
····	agnetic energy (-ve sign) per unit time in certain
	Volume Vis equal to work done (energy) by field forces
v=v-	per unit time plus flux flow outwards per unit time."
*	Wave eqn for E&H:-
	Whenever EM waves propagated or transmitted in the
	free space, they reach the destination with the speed
······································	equal to the speed of the light.
	Recalling Maxwell's Differential equs,
- <u>-</u>	$\nabla \cdot \overline{D} = \emptyset$
. .	<u>∇.8</u> = 0
	$\nabla X \overline{E} = -\partial \overline{B}$
	0t
	$\nabla XH = T + \partial D$
	∂t (†)
	with $\overline{J} = \overline{\sigma} \overline{E}$, $\overline{B} = \overline{A} \overline{O} \overline{H}$, $\overline{D} = \overline{G} \overline{E}$ \overline{D}
	4 in the free space i.e. vacuum,
	8=0, €0=1, U0=1, 0=0.
	So maxwell's egns reduced to,
	$\nabla \cdot \overline{E} = 0$ $ A$
- "	
	$\nabla \cdot H = 0$ \longrightarrow \mathbb{B}
	DXE = -NO OH
	$\nabla XH = \epsilon_0 \partial \epsilon$
	Taking the Curl on B.S. of eqn (we have,
	VX (VXE) = - V X (MO OH)
	ot)
	$= -\text{Mo} \overline{\nabla} \times \overline{\partial H},$
1	9-
	f

```
Using the Vector identity,
           \overline{A} \times (\overline{B} \times \overline{c}) = \overline{B} (\overline{A} \cdot \overline{c}) - \overline{c} (\overline{A} \cdot \overline{B})
         \nabla X (\nabla X \vec{E}) = \nabla (\nabla \cdot \vec{E}) - \vec{E} (\nabla \cdot \nabla)
          = 0 - \nabla^2 \overline{E} \qquad \therefore \overline{\nabla} \cdot \overline{E} = 0
\therefore -\nabla^2 \overline{E} = - \mu_0 \overline{\nabla} \times \partial \overline{H}
since, the Curl operation & the operation of differentiation
w.r.t. time t can be interchanged.
                .. The above eqn becomes,
                    -\nabla^2 \overline{E} = -400 (\overline{\nabla} x \overline{H}) - 2
       substituting from eqn (1),
                 -\nabla^{2} \stackrel{\sim}{E} = -H_{0} \stackrel{\rightarrow}{\partial} \left( \begin{array}{c} C_{0} \stackrel{\rightarrow}{\partial} \stackrel{\rightarrow}{E} \end{array} \right)
                  -\nabla^2 \overline{E} = -\epsilon_0 \mu_0 \partial^2 \overline{E}
                √2 E - Mo Go 2º E = 0
                                                                      , with 10€0 = 1
   Similarly taking the curl on B.S. of eqn D, we get
         \overline{\nabla} \times (\overline{\nabla} \times \overline{H}) = \overline{\nabla} \times \epsilon_0 \partial \overline{\epsilon}
          \nabla \times (\nabla \times H) = \epsilon_0 \nabla \times \partial E
       Using the vector identity we have,
         \nabla \times (\nabla \times H) = \nabla \cdot (\nabla \cdot H) - H \cdot (\nabla \cdot \nabla)
                              = 0 - \nabla^2 \overline{H} \qquad \therefore \overline{\nabla} \cdot \overline{H} = 0
```

Substituting from eqn \bigcirc $-\nabla^2 H = 600$ V2H - Mo€0 32H $\nabla^2 \overline{H} - \underline{I} \partial^2 \overline{H} = 0$, with $\mathcal{L}_0 \mathcal{E}_0 = \underline{I}$ Eqns & & (**) are known as vector wave egns for the field vectors E & H respectively. These two egns are Compared with the Standard wave eqn representing as, However, the Standard egn represents an unattenuated wave travelling at a speed V. So we conclude that field vector E & H are propagated in free space as waves at a speed = Velocity of light. Junes Mo = 4TT X10-7 H/m. & Eo = 8.85 X10-12 F/m Then C=3×108 m/s.

Frequency Range of Em waves & their significance: 30 Hz _)_ 107m ELF 106m 300 Hz VF 10⁵ m 3 KHZ VLF 30 KHZ 109m LF 103 m 300 KHZ freqns mf to2m wavelengths 3 MHz HF 30 MHz tolm VHF 1m_ 300 MHZ UHF 3GHZ 10-1 m SHF 10^{-2} m 30 GHZ _) EHF 16-3 m 300 GHZ millimeter 10-4 m waves \(\frac{1}{2}\) Infrared) 0.7 X 10⁻⁶m (Red) Visible light) aled 0-4 ×10-6 m (Violet) Ultraviolet) 5) X-rays -)_ -)-Gamma rays Cosmic rays - 7 The Electromagnetic spectrum)))

4	COULCE TOUCK	<u> </u>
17	Extremely low frequencies (ELF):-)
	The frequency range from 30 Hz to 300 Hz is)
	called as extremely low frequency range. It includes)
	a.c. power line frequencies (60 Hz) & those frequencies)
•	in the lower end of the human hearing range.)
)
2]	Voice frequencies (VF) :-)
	The freq range from 300 Hz to 3KHZ is called)
	a voice frequency range. This is the normal range of	
	human Speech.	
3]	Very low frequencies (VLF) (3KHz-30KHz):-	
	It includes higher end of the human hearing range.	
	Also used by Government & military Communications.	
	These frequencies are used as long distance point to	
	point Communications.	<i>-</i>
		,
4]	Low frequencies (LF) (30 KHZ - 300 KHZ):-)
	They are used in aeronautical of marine navigation.)
		,)
5]	Medium Frequencies (MF) (300 KHZ - 3MHZ):-)
	These frequencies are used in AM radio broadcasting).
	(535 to 1605 KHZ).)
)
6]	High Frequencies (HF) (3MHZ - 30MHZ):-)
	These are also known as short-wave. Short-wave)
	broad casting at national & international level takes	
····	place în this range.	-)_
7]	Very high frequencies (VHF):- (30MHZ - 300 MHZ):-	-) ,
		1

Ć		
)		\CO(\)\$\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
))) 2)3		This is an extremely popular frequency range & is used by mobile radio, FM radio broadcasting (88-108.MH) & TV channels 2 through 13.
	87	Ultrahigh frequencies (UHF): (300 MHZ - 3 GHZ):- This range of frequencies is extremely used for Communication. This range is used for TV channels 14 through 83, (ellular telephone of military Services. Frequencies above 1000 MHz = 1 GHz are called microwaves.
-)- -)- -)- -)-	وا	Super High Frequencies (SHF) (3GHZ-30GHZ):- These are microwave frequencies. Frequencies within the range 1 to 30 GHZ are Called microwave. They are used in Satellite Communication & RADAR.
)	10]	Extremely high frequencies (EHF) (30 GHz - 300 GHz):- This range is not much popular. & used in limited activity- It includes satellite communication & some specialized RADAR.
) } -)-	117	Intrared: - The frequencies up to 300 GHz are Called radio waves. Infrared region is between highest radio frequencies of the visible spectrum. They are used in Astronomy to detect stars of also used in guided missiles, T.V. Remote Control,
-)- 1 ₆) -)-	12]	The Visible Spectrum: The Visible Spectrum is above the infrared region. Also referred to as light. This Spectrum is used in fiber optics.
- <u>j</u> -	[3]	Ultraviolet & X-rays: - Used in Investigations
)	14)	Gamma Rays: - Radioactivity.

*	5kin Depth:
	A good Conductor is defined as one having a very
	high Conductivity; Consequently, the Conduction Current
	is much larger than the displacement Current. The
	energy transmitted by the wave travelling through
	the medium will decrease Continuously as the wave
	propagates because Ohmic losses are present. Expressed
	mathematically, a good Conductor requires the
	(riterion 0>> WE
	This distance is called as the skin depth.
	4 is denoted by 8.
	S = 1
	TT-JU6
	At microwavefrequencies, the skin depth is extremely
	Short.
·	
*	Polarization: - Plane, circular, elliptical:-
-	Plane Polarized wave:
	We know that, the EM waves have a electric 4
	magnetic field vectors & they are lar to each other &
	also always perpendicular to the direction of propagation.
	If the EM waves are propagating along the tre Z-dir,
	then ESH can have components in the Z-dirn.
	: A plane Em wave propagating in free space
	has no longitudinal Components.
	In practice, the EM wave Consists of Combination
	of plane waves propagating in the Same direction with
	\cdot
· 	Á
	arbitrary Orientations of field vectors, arbitrary magnitudes of random phases is called as an

A superposed wave is obtained by the Combination of Various plane waves. The electric field vectors in a Superposed wave or a resultant wave lie in a certain fixed direction, such as a wave is said to be plane polarized wave or linearly polarized wave. The Em waves having horizontal electric field vector is referred to as horizontally polarized wave--(¹² The EM waves having vertical electric field vector is referred to as vertically, Polarized wave. H @ Vertically Polarized wave | 6 Horizontally Polarized wave. There are 3 types of Polarization:-) linear or Plane Polarization circular Polarization (ب Elliptical Polarization. (يه Linear or Plane Polarization: ر). The electric field of linearly polarized wave in Y-dir is given by eqn, $E_y = E_2 \sin(\omega t - kz) - A$ This wave Propagates in the tre z-dira irp -) - 7

3]	circular Polarization:)
7	$\frac{E_y^2}{E_x^2} + \frac{E_x^2}{E_x^2} - 2 E_x E_y \cos \delta = \sin^2 \delta - 0$)
	E_2^2 E_1 E_1E_2)
	If $E_1 = E_2$ & $S = T$ then eq^n (1) becomes	·.)
	circularly polarized wave.	}
· · · · · · · · · · · · · · · · · · ·	$\frac{Ex^2 + Ey^2 = 1}{(\cdot \cdot \cos \pi = 0)}$	<u> </u>
	r^2 r^2	- <u>-</u>
	$E_{x}^{2} + E_{y}^{2} = \mathbf{E}_{i}^{2} - 2$	حر الا
		<i>)</i> -
	that the magnitude of E remains Constant although)-
	its dir rotates.)-
	E2 1 -	•
	E)
······································)
·	$\left(\circ \right)_{\mathcal{E}_{1}} \times$	J
·)
	Circular Polarization)
	When $\delta = + TT/2$, the wave is left circularly polarized)
	I when $S = -TT/2$, the wave is right circularly polarized.)
)
₩-	Reflection & Refraction of EM waves from boundary of	_)
	two diejectrics:	Ĺ
	Boundary Conditions;-	}
۵٦	The normal Component of a magnetic induction is continuous).
	across boundary i.e. Br = Bn 2) <u> </u>
) }-
bĵ	The tangential Component of electric field E is Continuous	<i>)</i>
	across the interface i.e. Et = Et	<i>)</i> -
and particular of the formation of the	will the life the case of the	<i>)</i> -
cl	The normal Component of a electric displacement Dis	J
	the normal component of a electric displacement D)
		-,

SOLDER TOUCH? Continuous across the interface i.e. Dn = Dn2. d7 The tangential Component of magnetic intensity H is Continuous across the surface Separating two dielectrics -)<u>.</u> i.e. Ht, = Ht, - 7 - 5 A plane EM wave is defined as a wave whose phase is the same at a given instant at all the points, in each) plane I'm to the some specified direction. Suppose if this) dir is along Z-axis, then E must have the same phase at all the points that have the same Z-Value. According to Snell's law, we know that when EM waves propagating in material usually enter the material through a boundary bet it having the two medium with different dielectric Constants K, & K2. Let us Consider an Em wave which is incident normally on a dielectric boundary interface. In this case, some of the incident energy is reflected of remaining is transmitted into the dielectric as shown in 4(b). Boundary Y Transmitted E_{2} K2,n2 medium 1 medium medium2 7. J -XKnn 045 Boundary interface medium Transmitted wave Incident Reflected Reflected wave in −X dirn

From the above fig @ & B, E&H describe the
incident wave travelling in the tre X-dirn. E, & H,
describe the reflected wave travelling in the -ve X-disn
while E2 & H2 are the transmitted rays of boundary
interface is taken along YZ plane. With the medium 1
on the LHS & medium 2 on the RHS having the dielectric)
Constants K, & K2 also having unit vectors T, 4 T2.
If these two media are isotropic, homogeneous,
Stationary, charge free, linear, non- conducting 4
infinitely extended, then the electric & magnetic field
vectors of reflected & transmitted waves are obtained
by using the Boundary Condition & by applying the
Right hand rule to the cross product of P = EXH.
The propagations of EM waves in a matter for non-
Conducting medium, therefore the refractive indexen
is equal to the Square root of the dielectric Constant
of the medium which is given as,
$n = \sqrt{K}$ we know that, $C^2 = \mathcal{H}_0 \in \mathcal{E}_0$, $V^2 = \mathcal{H}_0 \in \mathcal{E}_0$
L: n = V/c = √4€/ √40€0 = €/€0
where K = dielectric Constant = E/Eo
where E = Permitivity of the medium 4
Eo = Permitivity of the free space.
The relation between magnetic field induction B & electric)
field E is given by,
B= √U∈ E But B=UH.
1. MH = √ME E
: H = JHE E = JUE E
$\frac{1}{4}$ $\sqrt{\frac{1}{4^2}}$
$H = / \in E$
V W

```
But € = €0, 41 = 40
                    H = n_1 \sqrt{\frac{\epsilon_0}{\mu_0}} E
           This eq will represent incident wave eq . Similarly, the
           reflected wave egn can be written as,
                        H_1 = n_1 \sqrt{\epsilon_0} E_1 - 3
tic
           similarly, the eqn for transmitted wave,
- <del>)</del>
                      H_2 = h_2 \sqrt{\frac{\epsilon_0}{M_0}} E_2 \qquad (9)
           Since we are Considering normal incidence of EM wave,
           boundary Conditions for Dn & Bn are meaningless & it
           themselves are zero.
          By applying the boundary Condition as tangential Componer
           only ESH,
                    E = E_1 + E_2
<u>.</u> )
                   E - E_1 = E_2 - 5
           similarly, H+H1 = H2 - 6
)
           Substituting the values of H, H, & Hz in eqn 6 from
          the eq 2, 3 & 4 we get,
                    €0 E + n, €0 E, = n2
No
zic
                   n_1E + n_1E_1 = n_2E_2 —
           To find the Value of E2, multiply by n, to eq 5 we get,
- <u>j</u>
                   n/E = n/E/ = n/E2 - 8
            Adding egns 9 48 we get,
 )
                   n_1 E + n_1 E_1 = n_2 E_2
                 + n_1 E - n_1 E_1 = n_1 E_2
 )
                    2n/E = (n/+n2) E2
```

	$E_2 = 2n_1 E - 9$)
	$n_1 + n_2$)
	To find the value of E, substituting eq 9 in 5	()
· · · · · · · · · · · · · · · · · · ·	\mathcal{J}	
	we get, $E - E_1 = E_2$	1
-	$E - E_1 = 2D_1 E$	
:	h ₁ +n ₂	
	$2n_{1}E = n_{1}E + n_{2}E - n_{2}E_{1} - n_{1}E_{1}$	-)
· · · · · · · · · · · · · · · · · · ·	1	
	$-n_1E + n_2E - n_2E_1 - n_1E_1 = 0$	
	$E(n_1-n_1) - E_1(n_1+n_2) = 0$	
	$E_1 = (n_2 - n_1)E_1 - (0)$	
	$n_1 + n_2$	
	In similar way, the values of H, & H2 are,	
		7
	$H_1 = \frac{(n_2 - n_1)H}{n_1 + n_2} \qquad \qquad - \qquad \boxed{1}$)
		-)
	$H_2 = 2n_2 H$	1)
	h ₁ +h ₂	
	The flux of the EM energy wave per unit area	
	$= \overline{p} = \overline{E} \times \overline{H}$	1
	:. P = EXH	
	: 1Pl = EH singo : singo = 1)
	P = EH)
	4 EH = E1H1 + E2H2	
).
	Reflection & Transmission Coefficient:	
	The reflection & transmission Coefficients are	
		<u> </u>
	related to the flow of energy across the interface.	
	The reflection Coefficient Rn at the interface beto	+)
	two non-Conducting media is defined as,	1
	"Rn is the ratio of magnitude of reflected energy	<u> </u>
		100

flux per unit area persec at the interface to the magnitude of incident energy flux per unit area per sec at interface. Rn = reflected energy Incident energy EIHI EH (n2-n1) Z (n2-n1) H nitnz n1+n2 Rn nitho Transmission Coefficient:-Transmission coefficient at the interface beth two non-Conducting media is defined as Tr "In is the ratio of magnitude of transmitted energy flux per unit area per sec at interface to the incident energy flux per unit area per sec at interface". OR To = Transmitted energy Incident energy E2 H2 EH 201H 2n, £ nitn2 nitha ZH 40102 $(n_1 + n_2)^2$

- 7

)

/ COIDIN TOUCH)
- Relation bet Tn & Rn:	
Show that Rn+Tn=1.	<u> </u>
Proof: - L.H.S	_)
= Rn + Tn)
$= (n_2 - n_1)^2 + 4n_1n_2$.)
$(n_1+n_2)^2$ $(n_1+n_2)^2$	·
$= n_2^2 - 2n_1n_2 + n_1^2 + 4n_1n_2$	<u>) </u>
$(n_1+n_2)^2$)
$-\frac{n_1^2+2n_1n_2+n_2^2}{n_1^2+n_2^2}$	
$(n_1+n_2)^2$	· `_
$= (n_1 + n_2)^2$	- ~~
$(n_1+n_2)^2$, , <u> </u>
= 1	<i>y</i> - _
= R.H.S.	
Hence proved.)
) ——
- Critical angle:-) ——
If the refractive index of the medium 1 (n) is) ——
greater than R.I. of the medium 2 (n2), the angle of)
refraction is always greater than the angle of incidence.)
Thus when the angle of refraction is 90° f the refracted)
ray emerges parallel to the interface beth the dielectrics,	·.,)
	_)
limiting case of retraction of the angle of incidence is known	
as the critical arms. Oc.	(
The value of the critical and Oc is,	<u>) </u>
Sin : = N2	
·m _{II}	·)-=
At angles of incidence greater than the critical angle,	-)-
the light is reflected back into the originating medium	-)-
(total internal reflection).	· Y

* Cyclotron :- operating principle:-When the electric field E & the magnetic field flux density B are at right angles to each other, a magnetic force is exerted onto the e beam. This type of field is called as crossed field. In a crossed field, ets emitted by controde are accelerated by the electric field & gain Velocity; but greater their velocity, the more their path is bent by the magnetic field. The device which operates on this principle is called as Cyclotron.

)	<u>ch:JV</u>	Applications Applications
)		1 50
<u> </u>		Nanostructure Devices
_ ')		
-)-	17	Resonant - tunneling diode:
=)-,-	E	Consider two barriers separated by a small distance
-)		forming a potential well as shown in the follow. fig@.
-)		We assume that the barriers are sufficiently thin to allow
	5:	turneling of that the well region between the two
} ,—		barriers is also sufficiently narrow to form discrete
-		(quasi-bound) energy levels as shown in fig 6.
·		E V=V ₀ V=V ₀
		F
		
<u> </u>	3	
		V=0
		> X
		a) Double barrier system forming a potential well.
· · · · · ·		Λ ^E
_ 	-	= = = = = = = = = = = = = = = = = = = =
		E, E, E
-)		t the second sec
-)		o a atl 2atl
-)	(b)	
- J		The quantized energy levels in the double barrier
-)		System potential well are given by,
)		
)		$E = E_n = \frac{\hbar^2}{2m^*} \left(\frac{n\pi}{L}\right)^2$
)		which is exactly the same as the result of the
)		quantized energy levels in a one-dimensional quantum
)		well.
)		
)		

d: - Current - energy characteristic for resonant turneling

This decrease of current with an increase of bias is called negative resistance. Further peaks of Valleys will occur as E approaches of then moves past, other quasi-bound states.

Tunneling is Controlled by applying a bias voltage across the device. For the case of no applied bias, the energy band diagram is similar to the shown in fig. ().

	L .
V _b \	n+- GaAs
Lb	Ala Gal-x As
ILW	Ga As
	Ala Gal-x As
	n+-GaAs

Ly

٦)--

Po

*

(a) Structure of double barrier resonant -tunneling junction.

A typical Structure is made by using n-type GaAs
for the regions to the left of right of the both barriers,
intrinsic GaAs for the well region of AlGaAs or AlAs for
the barrier material.

Electrons in Quantum Wells, Wires of Dots:

Assume that an electron reside in a 3-dimensional region of space as shown in the fig.

If $\lambda e << lx$, ly, lz then the electrons will be free in all directions (i.e. they will act like free particles), of we have an effectively 3-dimensional System. i.e. the system in all directions is large. Compared with

the size Scale of the electrons fig: 3-dimensional region of space: Lxyz >> 2e Even though the space is finite & therefore the possible energy levels of the electron are discrete, because the space is relatively large, the discrete energy levels form essentially a quantum Continuum If we assume that the boundaries of the space have hand walls, then the energy levels are given by, Since, Lxyz are Very large of Dxyz are integers, the ratios hx/Lx, ny/Ly & nz/Lz Vary almost Continuously from a very small values to very large Values. Making the replacements Trox > Kx, Try > ky, where, Kx, Ky & Kz are Continuous Variables we have, 2me Econt (ka, ky, kz)

If Lxyz are large but yet finite, Econt (Kx, ky, kz) is an approximately Continuous energy profile of as Logy > a , Econt (Kx, Ky, Kz) becomes the purely Continuous energy for an electron in an infinite space. The de Broglie wavelength gives the "size" of the & i.e. a region of space having length Lis "Large" if L>> Le & "Small" if L< Le. While this is true, the de Broglie wavelength depends on the energy of electron & Fermi energy. The de Broglie wavelength at the Fermi energy 95 called the Fermi wavelength & is denoted by the Symbol 2c. For a space to be Sufficiently "large" so that the energy levels of the electron form an approximately Continuous Set, we usually require Lx, Ly, 12 >> 2. Quantum Wells: Assume that we make the space narrow in one direction means, Lx ≤ Ap << Ly, Lz. In this case we can write as, $E = \frac{1}{4} \frac{1}{2} \frac{1}{1} \frac{1}{2} \frac{$ $10x^{2} + t^{2}\pi^{2} (Ky^{2} + k_{x}^{2})$ Enze + Econt (Ky, Kz) - 3 Where, since Lx is relatively small, Enx represents discrete one-dimensional energies. Since Ly & Lz are relatively large, two of the substitutions in ego 2 leads to Eant (Ky, Kz) which represents an

_)_

-)<u>.</u>...

- y-

approximately Continuous energy profile. In this case, electron movement will be Confined in the X-dir? (i.e. e[©]s will feel the boundary in the X-dir?), exhibiting energy quantization in that direction & will be free in the two other direction. This makes for an effectively two-dimensional System Called a two-dimensional electron gas, also called a quantum well. The discrete energy levels given by he form the Subbands.

An et is in a certain discrete energy level nx, i.e. it is in a certain subband, but it is otherwise free in the Y-Z plane.

To obtain the wave function we can consider the electron to be totally free in the y-2 plane, but Constrained in the x-dir by hard walls at x=0 & 1 be x= Lx. Schrödinger's eqn with V=0 is, i zy $\frac{\nabla^2 \Psi(z) + 2m}{z^2} = 0$ J.D $-\frac{1}{2} \nabla^2 \psi(z) = E\psi(z) - \frac{1}{2}$ The wavefunction in product form, $\Psi(x,y,z) = \Psi_x(x) e^{ik_y y} e^{ik_z z}$ where the plane-wave factor contains the continuou) wavevectors Ky & Kz. The boundary Conditions $\Psi_{\alpha}(0) = \Psi_{\alpha}(L_{\alpha}) = 0$) lead to $\frac{1}{\Psi(x,y,z)} = \left(\frac{2}{Lx}\right)^{\frac{1}{2}} \frac{ik_{y}y}{\sin n_{x}\pi} = \frac{ik_{y}y}{Lx}$) where, nx = 1,2,3... & where the allowed energy) is given by eqn 2 Quantum Wires: Assume that we make the original space shown in the following fig., narrow in two directions lx, ly < AF << Lz Fig: a quantum dot wire,) One-dimensional

> Lxy < 26 LZ >> AF

Space,

.)

)

CCEPEN POUCE 1. m / /20 1. m / /20 CCEPEN FOUCE

Enx, ny + Econt (Kz) where, since he & by are both relatively small, Enx, Eny represents discrete, 2 dimensional subband energies & since 12 is relatively large, Econt (Kz) represents an approximately Continuous energy profile. In this case, e movement will be confined in the X-y plane (i.e. e95 will feel boundaries in the xq y-dirns), exhibiting energy quantization in that planet will be free free in the Z-dirn. This makes for an effectively one-dimensional System Called a quantum wire. Regarding the et as being totally free, in one dir but constrained by hard walls at x=0, lx & y=0, Ly. Schrodinger's eqn with V=0, $\nabla^2 \psi(2) + 2me = \psi(2) = 0$ $-t^2 \quad \nabla^2 \Psi(z) = E \Psi(z)$ will have solutions in the product form, $\Psi(x,y,z) = \Psi_{\chi}(x) \Psi_{\gamma}(y) \exp(ik_{\chi}z)$ Using the boundary conditions, Yx(0) = Yx (Lx) =0 2 6 Py (0) = Py (ly) = 0 we obtain,

___)

I where energy is where, na, 4 = 1,2, 3 - --given by eqn 2. <u> Yuantum</u> dots:-Now assume that we make the space small in all 3 dirns, Lx, Ly, Lz & 2 as shown in the fig. In this case, we can write as, Enox,ny,nz where since Lx, Ly & Lz are all relatively Small, Enx, ny, nz represents discrete energies. en movement will be confined in the all 3 dirns. (i.e. e05 will feel the boundaries in the x, y & z dirns), exhibiting energy quantization in 3 dimensions & will not be free in any dir. This makes for an effectively zero-dimensional System colled quantum dot. since the typical e of interest has a fermi wavelength on the order of nanometer in metals, I many tens of nm in semiconductors, quantum dots are nanoscale pieces of material, typically ranging in size

from several nm to hundreds of nm. Quantum dot Contains from Several hundred to several hundred thousand atoms. Quantum dots are typically much larger than atoms, but are generally too small to act like abulk solid. An et in a quantum dot will act more like an et in molecule than et in a bulk solid, & for this reason, quantum dots are Sometimes Called artificial molecules. * Flash Memory :-It is a non-volatile Computer Storage chip that can be electrically erased 4 reprogrammed It was developed from EEPROM (electrically erasable Programmable Rom) & must be erased in fairly large blocks before these can be rewritten with new data characteristics :-1) It is a non-volatile memory. 2) It stores information in array of memory Cells made from floating gate transistors. 3] In flash memory, each memory cell resembles a Standard MOSFFT